

INDUSTRIE KUPPLUNGEN

NEXT LEVEL INFORMATION

AUGMENTED REALITY APP ZUKUNFT HEUTE ERLEBEN

Mit unserer R+W App verschmelzen die Grenzen zwischen realer und virtueller Welt. Erleben Sie unsere Produktpalette dank Augmented Reality Technologie wie noch nie zuvor.

Jede Produktabbildung in unserem Katalog die mit diesem Icon gekennzeichnet ist, ist mit zusätzlichen Informationen hinterlegt. Mithilfe Ihres Smartphones oder Tablet PC's können Sie diese in einer erweiterten Realität betrachten.

MIT WENIGEN SCHRITTEN IN DIE AUGMENTED REALITY

- 1. Laden Sie sich die kostenlose R+W App über den Apple App Store oder den Google Play Store herunter. Die App ist für alle iOS Geräte ab Version 7.0 oder für Android ab Version 4.1 erhältlich.
- 2. Immer wenn Sie mit dem Icon gekennzeichnete Produktabbildungen im Katalog sehen, können Sie mit der Augmented Reality App mehr zu dem Produkt entdecken.
- 3. Die App erkennt die Scanvorlage und stellt die AR-Inhalte dar. Halten Sie hierzu ihr mobiles Gerät in einem Abstand von ca. 20-30 cm über der Broschüre und bewegen Sie es leicht. 3D Modelle, Animationen, Videos und weitere Informationen warten jetzt darauf von ihnen entdeckt zu werden.

R+W AR App jetzt kostenlos im Apple App Store oder Google Play Store downloaden.

Die R+W App ist auf der R+W Webseite auch als Windows-Version verfügbar (rw-kupplungen.de/app/).

NEXT LEVEL COMMUNICATION

SOCIALIZING MIT R+W

Sie möchten uns und unsere Kupplungen besser kennenlernen? Wir nehmen Sie gerne mit in die Welt von R+W. Auf unserem Youtube-Kanal können Sie unsere Themen als Film verfolgen.

Sie sind mehr an Einsatzbeispielen für unsere Kupplungen interessiert? Dann sehen Sie sich doch einmal bei den Fachberichten um, die Sie auf der Homepage finden. Die birgt ohnehin viele informative Möglichkeiten: Hier können Sie sich für unseren Newsletter anmelden oder weitere Informationen zur R+W-App finden.

Und wenn Sie einfach nicht genug von uns bekommen können: Wir sind auch auf diversen Social Media Kanälen präsent.

WER WIR SIND.

R+W IST VOR ALLEM EINES: DIE KUPPLUNG.

Als die R+W Antriebselemente GmbH im Jahr 1990 in Klingenberg am Main gegründet wurde, waren 3 Mitarbeiter an Bord. Der Hauptsitz ist geblieben, nur beschäftigen wir inzwischen über 220 Mitarbeiter, haben Tochterunternehmen in den USA, China, Italien, Singapur, Frankreich und der Slowakei sowie über 60 Premiumpartner in mehr als 40 Ländern der Welt. Hinter diesem Erfolg stecken viele Weiterentwicklungen und unsere permanente Suche nach der besten und vor allem unmittelbaren Lösung. Aber auch die hohe Wertschätzung, die wir all unseren Kunden entgegenbringen.

WIR BIETEN PLANUNGSSICHERHEIT SOWIE VIELE NEUE IMPULSE.

Die R+W Antriebselemente GmbH steht für hohe Entwick-lungs- und Lösungskompetenz im Bereich der spielfreien Drehmomentübertragung. Im Zentrum unserer Entwicklungsarbeit stehen innovative Kupplungssysteme für die verschiedensten Branchen der Antriebstechnik. Als führender Hersteller von Präzisionskupplungen und Gelenkwellen ist die dauerhafte Technologieführerschaft im Bereich der Kupplungstechnik unser zentraler Anspruch: R+W Kupplungen sorgen für Effizienz und Prozesssicherheit, sie sind quasi perfekt.

Unser technisch und wirtschaftlich optimales Produktportfolio umfasst:

- ▶ Metallbalgkupplungen
- **▶** Elastomerkupplungen
- ▶ Sicherheitskupplungen
- **▶** Gelenkwellen
- ▶ Lamellenkupplungen
- ▶ Zahnkupplungen
- ► Entwicklung kundenspezifischer Sonderlösungen inkl.:
 - Beratung
 - Konzeption
 - Berechnung der Antriebsstrangauslegung
 - Prototypenbau
 - Fertigung

MIT JEDER MENGE DRIVE

AN DIE WELTMARKTSPITZE!

Unser Leitmotto DRIVE eint unsere 220 Mitarbeiter in der gemeinsamen Berufung, erstklassige und hochleistungsfähige Kupplungen für den Weltmarkt herzustellen.

Mit DRIVE stellen wir uns als dynamischer, richtungsweisender, innovativer und vielseitiger Markt- und Technologieführer vor, der täglich expansiv nach Weiterentwicklung und Verbesserung strebt.

DRIVE STEHT FÜR

DYNAMIK

Dynamik fasziniert uns. Für unser Team bedeutet "Dynamik" herausragende Expertise in sämtlichen Fragen der Drehmomentübertragung und bestes Zusammenspiel beim Erwerb und der Anwendung von Unternehmens-Know-how. Im Dienst für unsere Kunden sind wir Schulter an Schulter auf dynamischem Kurs zu Performance und Unternehmensexzellenz!

RICHTUNGSWEISEND

Unser persönlicher Wegweiser steht auf Zukunft! R+W fertigt für die Spitzenbranchen der Antriebstechnik spiel-, verschleiß- und wartungsfreie Kupplungssysteme auf dem neuesten Stand der Technologie. Außerdem sind wir Vorreiter für punktgenau gefertigte Sonderlösungen. Unsere Produkte sind eine sichere Investition in die Effizienz und Betriebssicherheit Ihrer Anlagen und Maschinen.

INNOVATIONSGEIST

Wir verstehen Wandlungsfähigkeit als eine der bedeutendsten Stärken unseres Unternehmens. Ein, von Innovationsgeist getragenes, kreatives Arbeitsumfeld entsteht nämlich

nicht durch Zufall, sondern durch eine konsequente Ausrichtung. Um stets am Puls der Technologieentwicklung zu sein, sind wir eng mit der Forschungselite vernetzt und arbeiten intensiv mit Universitäten und Fachhochschulen zusammen. Als Resultat konnten wir zur Realisation unserer Prototypen in den vergangenen Jahren eine erfolgreich arbeitende Forschungs- und Entwicklungs-Abteilung aufbauen.

VIELSEITIGKEIT

Vielseitigkeit beginnt bei R+W mit der Bündelung von Kreativität, Fähigkeiten und Kapazitäten unserer Mitarbeiter. Breit aufgestellt arbeiten wir nahe an den Anforderungen unserer Kunden und reagieren schnell und lösungsorientiert auf Veränderungen. Genau aus dem Grund sind wir übrigens der perfekte Ansprechpartner, wenn es um Konzeption, Konstruktion und die Fertigung von Spezialund Sonderlösungen geht. Besonders stolz sind wir auf die hohe Variantenvielfalt unserer Produkte und auf unser Bekenntnis zur stetigen Entwicklungsverbesserung.

EXPANSION

Expansion ist ein wichtiges Ziel für die Zukunft unseres Unternehmens. Wir verstehen darunter vor allem nachhaltig wachsende, authentische Branchenkontakte innerhalb eines weltweiten Kompetenznetzwerks. Unsere Kunden profitieren von unserer großen, unkomplizierten Marktnähe und von den Synergien mit unseren Partnern, weil wir uns damit immer dicht an den unterschiedlichsten Bedürfnissen aus der Praxis aufhalten. Das macht uns flexibel und reaktionsstark. Auf Kundenanfragen und im Bedarfsfall finden wir auf alle Fälle die richtige Lösung!

PRÄZISIONS

WEITERE R+W KUPPLUNGEN

Natürlich gehören außer den hier aufgeführten **Industriekupplungen** auch Präzisionskupplungen zu unserem Portfolio.

Beachten Sie hierfür bitte unseren Katalog PRÄZISIONSKUPPLUNGEN.

ANWENDUNGSGEBIETE UND EIGENSCHAFTEN INDUSTRIEKUPPLUNGEN

DIMENSIONIERUNG

S. 9

EINBAUHINWEISE

- S. 31

TOROSET® SICHERHEITSKUPPLUNGEN

. 41

von 200 - 250.000 Nm

ANWENDUNGSGEBIETE

- ▶ Walzwerke
- ▶ Windkraftanlagen
- ▶ Schaufelbagger
- ▶ Extruder
- ▶ Stahlwerke
- ▶ Abwasserwirtschaft
- ▶ Schredderanlagen
- ► Tunnelbohrmaschinen
- ► Fördertechnik usw.

EIGENSCHAFTEN

- ▶ kompakte, einfache Bauweise
- ▶ drehsteife Ausführung
- ▶ freischaltend
- ▶ nachstellbar
- ▶ robust
- ▶ exakte Drehmomentbegrenzung

TORSIONSSTEIFE LAMELLENKUPPLUNGEN

S. 65

von 350 - 50.000 Nm

ANWENDUNGSGEBIETE

- ▶ Stahlwerke
- ▶ Druckmaschinen
- ▶ Pumpen nach API-Standard
- ▶ Rührwerke
- ▶ Prüfstände
- ▶ Ventilatoren
- ► Generatoren usw.

EIGENSCHAFTEN

- exakte Übertragung von Winkel& Drehmoment
- ▶ lebensdauerfest
- ▶ verschleiß- & wartungsfrei
- ▶ komplett montiert
- ▶ Drehmomentübertragung über Reibschluss
- ▶ hohe Betriebssicherheit
- Ausgleich von axialen, lateralen & angularen Wellenverlagerungen

FLEXIBLE ZAHNKUPPLUNGEN

5. 79

von 1.900 - 2.080.000 Nm

ANWENDUNGSGEBIETE

- ▶ Mischer
- ▶ Walzwerke
- ▶ Pumpen
- ▶ Prüfstände
- ▶ Stahlwerke
- ▶ Förderanlagen usw.

EIGENSCHAFTEN

- ▶ robuste Bauweise
- ▶ verschleißarm
- ▶ kompakte Bauweise
- ► Ausgleich von axialen, lateralen & angularen Wellenverlagerungen

TORSIONSSTEIFE METALLBALGKUPPLUNGEN

S. 89

von 10.000 - 100.000 Nm

ANWENDUNGSGEBIETE

- ▶ Walzwerke
- ▶ Mischer und Extruder
- ▶ Stanzen, Pressen
- ▶ Werkzeugmaschinen
- ▶ Mühlen, Brecher
- ▶ Prüfstände
- ► Kompressoren
- ► Rührwerke
- ▶ Windkraftanlagen usw.

EIGENSCHAFTEN

- ▶ robuste Bauweise
- ▶ hohe Torsionssteife
- ▶ lebensdauerfest & wartungsfrei
- ▶ leichte Montage & Demontage
- ► exakte Übertragung von Winkel & Drehmoment
- ▶ geringe Rückstellkräfte
- ► Ausgleich von Wellenverlagerungen
- ▶ ruhiger, gleichmäßiger Lauf

SPIELFREIE SERVOMAX® ELASTOMERKUPPLUNGEN

S. 95

von 1.950 - 25.000 Nm

ANWENDUNGSGEBIETE

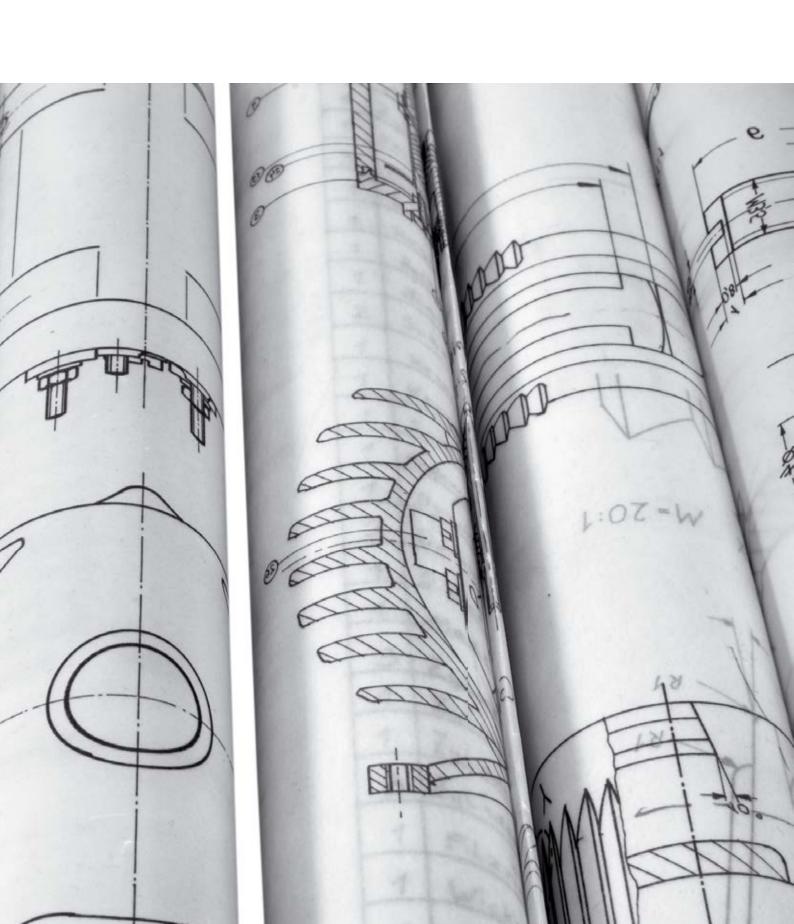
- ▶ allgemeiner Maschinenbau
- ▶ Pumpen
- ▶ Rührwerke
- ► Schredderanlagen
- ▶ Fördertechnik
- ▶ Brecher usw.

EIGENSCHAFTEN

- ▶ schwingungsdämpfend
- ▶ elektrisch isolierend (Standard)
- Ausgleich von axialen, lateralen & angularen Wellenverlagerungen
- ▶ spielfrei
- ▶ steckbar

EINSATZ IN EXPLOSIONSGEFÄHRDETEN BEREICHEN

S. 103


ANWENDUNGSGEBIETE

- ▶ Pumpen
- ▶ Rührwerke
- ▶ Tankanlagen
- ► Chemische Industrie
- ▶ Pharmaindustrie
- ▶ Raffinerien
- ▶ Nahrungsmittel- & Futtermittelindustrie
- ► Gasversorgungsunternehmen
- ► Holzverarbeitende Industrie
- Lackierbetriebe usw.

EIGENSCHAFTEN

Für die Gefahrenzonen 1/21 und 2/22 nach Richtlinie 94/9/EG können die Kupplungen kurzfristig angeboten werden.

- ▶ Sicherheitskupplungen
- ► Lamellenkupplungen
- ► Metallbalgkupplugen
- ▶ Elastomerkupplungen

DIMENSIONIERUNGEN

Auslegung in Anlehnung an DIN 740 Teil 2

ALLGEMEINE INFORMATIONEN SICHERHEITSKUPPLUNGEN

SICHERHEITSKUPPLUNGEN

ST

DREHMOMENTE SICHER BEGRENZEN

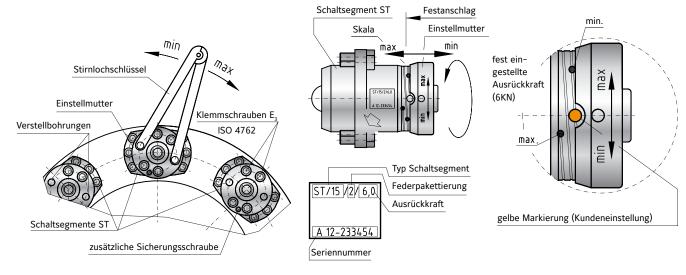
Der Einsatz einer Sicherheitskupplung der Baureihe ST verringert die Stillstandszeiten bei Crash und erhöht dadurch die Verfügbarkeit und Produktionsleistung Ihrer Anlage.

Die Sicherheitskupplungen der Modellreihe ST wurden für hohe Drehmomente ausgelegt. Möglich wird dies durch robuste Schaltsegmente, die gleichmäßig am Umfang verteilt sind.

R+W Sicherheitskupplungen der Baureihe ST arbeiten als federbelastete Formschlusskupplungen.

Die übertragbaren Drehmomente werden durch die Anzahl und dem Lochkreisdurchmesser der Schaltsegmente bestimmt.

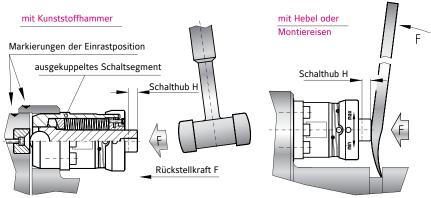
Im Falle einer Überlast bewegen sich die Kugeln axial aus den Kalotten und bewirken eine dauernde Freischaltung der An- und Abtriebseite.


Die Wiedereinrastung erfolgt einfach durch axialen Druck auf den Schaltstößel.

Das Sicherheitsmodul besteht aus zwei Bauteilen. Dem Einrastsegment und dem einstellbaren Schaltsegment.

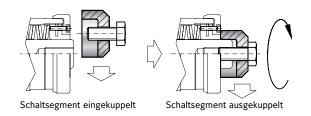
DREHMOMENTEINSTELLUNG

Nach dem Lösen (ca. 1 x Umdrehung) der Klemmschrauben (E3) kann die Einstellmutter mehrere Umdrehungen verstellt werden. Die Einstellung wird bei max. durch einen Festanschlag begrenzt. Der obere Wert bei min. ist deutlich beschriftet. Nach der Einstellung sind alle Sicherheitskupplungsteile durch das Anziehen der Klemmschrauben E3 zu sichern.


▶ Achtung

Alle Schaltsegmente einer Kupplungseinheit müssen auf die gleichen Umfangskräfte eingestellt werden.

WIEDEREINRASTUNG DER EINZELNEN SCHALTSEGMENTE


Nach Beseitigung der Störungsursache werden An- und Abtriebsseite auf eine gemeinsame Position gedreht. Die Markierungen der An- und Abtriebsseite stehen jetzt übereinander. Nur in dieser Position ist es möglich, die Kupplungsteile wieder einzukuppeln.

Durch axialen Druck auf die Kupplungsstößel können die Schaltsegmente wieder in die Grundstellung eingerastet werden. Das Einrasten ist deutlich hörbar. Die gesamte Sicherheitskupplung ist wieder betriebsbereit.

AUSKUPPELN DER EINZELNEN SCHALTSEGMENTE

Vor der Inbetriebnahme einer Maschine oder Anlage können die einzelnen Kupplungsteile im eingebauten Zustand ausgekuppelt werden. Für diese Aufgabe sind R+W Vorrichtungen lieferbar. (siehe Seite 61)

ST

SICHERHEITSKUPPLUNGEN

ABKÜRZUNGEN

 T_{AR} = Ausrückmoment der Kupplung (Nm)

K = Abschaltfaktor

 T_{max} = max. auftretendes Drehmoment (Nm)

T_{AN} = Nenndrehmoment Motor (Nm) P_{Antrieb} = Leistung des Antriebes (kW)

n = Drehzahl des Antriebes (min⁻¹) α = Winkelbeschleunigung (rad/s²)

t = Beschleunigungszeit (s)

ω = Winkelgeschwindigkeit (rad/s)
 n = Drehzahl des Antriebes (min ⁻¹)

J_L = Trägheitsmoment der Lastseite (kgm²)
 J_A = Trägheitsmoment der Antriebseite (kgm²)

T_{AS} = Spitzenmoment des Motors (Nm)

S = Anzahl der Segmente

F = Umfangskraft (kN)

r = Hebellänge (m) s = Spindelsteigung (mm)

F_v = Vorschubkraft (N)

η = Wirkungsgrad der Spindel

d_o = Ritzeldurchmesser (Zahnriemenscheibe) (mm)

 $F_v = Vorschubkraft (N)$

C_T = Torsionssteife der Kupplung (Nm/rad) J_{Masch.} = Maschinenträgheitsmoment (kgm²)

(Spindel + Schlitten + Werkstück +

Kupplungshälfte)

J_{Mot.} = Motorträgheitsmoment (kgm²)

(Rotor des Motors + Kupplungshälfte)

 f_e = Resonanzfrequenz des 2-Massen-Systems (Hz)

Stoß- oder Lastfaktor S _A					
gleichförmige Belastung	ungleichförmige Belastung	stoßende Belastung			
1 2 3					
Für Servoantriebe an Werkzeugmaschinen sind folgende Werte üblich: $S_A = 2-3$					

NACH DEM AUSRÜCKMOMENT

Die Sicherheitskupplungen werden in der Regel nach dem erforderlichen Ausrückmoment ausgelegt. Dies muss über dem Moment liegen, welches für den regelmäßigen Betrieb der Anlage notwendig ist.

Das Ausrückmoment der Sicherheitskupplungen wird in der Regel nach den Antriebsdaten bestimmt. Hierzu hat sich nebenstehende überschlägige Rechnung bewährt:

K = 1,3 gleichförmige Beanspruchung

K = 1,5 leichte ungleichförmige Beanspruchung

K = 1,8 schwere ungleichförmige Beanspruchung

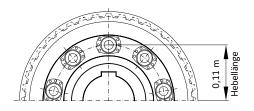
$$T_{AR} \ge K \cdot T_{max} (Nm)$$

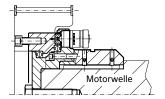
oder

$$T_{AN} \ge 9.550 \cdot \frac{P_{Antrieb}}{n}$$
 (Nm)

NACH DEM BESCHLEUNIGUNGSMOMENT (ANFAHREN OHNE LAST)

$$T_{AR} \ge \alpha \cdot J_{L} \ge \frac{J_{L}}{J_{A} + J_{L}} \cdot T_{As} \cdot S_{A} (Nm)$$


$$\alpha = \frac{\omega}{n} = \frac{\pi \cdot n}{t \cdot 30}$$


NACH DEM BESCHLEUNIGUNGS-UND LASTENDREHMOMENT (ANFAHREN UNTER LAST)

$$\mathsf{T}_{\mathsf{AR}} \geqq \alpha \cdot \mathsf{J}_{\mathsf{L}} + \mathsf{T}_{\mathsf{AN}} \geqq \left[\frac{\mathsf{J}_{\mathsf{L}}}{\mathsf{J}_{\mathsf{A}} + \mathsf{J}_{\mathsf{L}}} \cdot (\mathsf{T}_{\mathsf{AS}} - \mathsf{T}_{\mathsf{AN}}) + \mathsf{T}_{\mathsf{AN}} \right] \cdot \mathsf{S}_{\mathsf{A}} (\mathsf{Nm})$$

NACH ANZAHL DER SCHALTSEGMENTE

NACH DER VORSCHUBKRAFT

Spindelantrieb

$$T_{AN} = \frac{s \cdot F_{v}}{2.000 \cdot \pi \cdot \eta} \text{ (Nm)}$$

Zahnriemenantrieb

$$T_{AN} = \frac{d_0 \cdot F_v}{2.000} \text{ (Nm)}$$

NACH DER RESONANZFREOUENZ

Die Resonanzfrequenz der Kupplung muss über oder unter der Frequenz der Anlage liegen. Für das mech. Ersatzmodell des 2-Massen-Systems gilt:

$$f_{e} = \frac{1}{2 \cdot \pi} - \sqrt{C_{T} \cdot \frac{J_{Masch} + J_{Mot}}{J_{Masch} \cdot J_{Mot}}} \quad (Hz)$$

DIMENSIONIFRUNG

SICHERHEITSKUPPLUNGEN

ST

AUSLEGUNG ELASTISCHE KUPPLUNG ST2

Serie	ST2 / 2	ST2 / 5	ST2 / 10	ST2 / 25	ST2 / 40	ST2 / 60	ST2 / 100	ST2 / 160
T _{KN} Nenndrehmoment (Nm	2.000	3.000	5.000	7.500	20.000	20.000	40.000	40.000
T _{Kmax} max. Drehmoment (Nm	4.800	7.500	18.000	25.000	48.000	48.000	120.000	120.000
Dynamische Torsionssteife (10³ Nm/rad	58	92	145	230	500	580	850	1000
Relative Dämpfung	1	1	1	1	1	1	1	1

ZUORDNUNG DER BELASTUNGSKENNWERTE NACH ART DER ARBEITSMASCHINE

BAGGER

- Eimerkettenbagger
- Fahrwerke (Raupen)
- Fahrwerke (Schiene)
- Saugpumpen
- Schaufelräder
- M Schwenkwerke

BAUMASCHINEN

- M Betonmischmaschinen
- M Straßenbaumaschinen

CHEMISCHE INDUSTRIE

- M Mischer
- Rührwerke (leichte Flüssigk.)
- Trockentrommeln
- G Zentrifugen

FÖRDERANLAGEN

- Fördermaschinen
- Gurtbandförderer (Schüttgut)
- Gurttaschenbecherwerke
- Kettenbahnen
- Kreisförderer
- Lastaufzüge M
- G Mehlbecherwerke
- Schneckenförderer
- Schotterbecherwerke Stahlbandförderer
- P = Leistung der Arbeitsmaschine in Kw
 - n = Drehzahl in min-1

- GEBLÄSE, LÜFTER¹
- G Gebläse (axial/radial) P:n ≤ 0,007
- Gebläse (axial/radial) P:n ≤ 0,07
- Gebläse (axial/radial) P:n > 0.07 Kühlturmlüfter P:n ≤ 0,007
- Kühlturmlüfter P:n ≤ 0,07
- Kühlturmlüfter P:n > 0,07

GENERATOREN, UMFORMER

Generatoren

GUMMIMASCHINEN

- Extruder
- Knetwerke
- Mischer
- Walzwerke

HOLZBEARBEITUNGSMASCHINEN

G Holzbearbeitungsmaschinen

KRANANLAGEN

- Fahrwerke
- Hubwerke
- Schwenkwerke

KUNSTSTOFFMASCHINEN

- M Mischer
- M Zerkleinerungsmaschinen

METALLBEARBEITUNGSMASCHINEN

- M Blechbiegemaschinen
- Blechrichtmaschinen

- Pressen
- M Scheren
- Stanzen
- M Werkzeugmaschinen-Hauptantriebe

NAHRUNGSMITTELMASCHINEN

- G Abfüllmaschinen
- M Knetmaschinen
- Zuckerrohrbrecher
- Zuckerrohrschneider Zuckerrohrmühlen
- M. Zuckerrübenschneider
- Zuckerrübenwäsche

PAPIERMASCHINEN

- S Holzschneider
- Kalander
- Nasspressen
- S Saugpressen
- Saugwalzen
- Trockenzylinder

PUMPEN

- Kolbenpumpen
- Kreiselpumpen
- Plungerpumpen

STEINE, ERDEN

S Brecher

- Drehöfen
- Hammermühlen
- Ziegelpressen

TEXTILMASCHINEN

- M Gerbfässer
- M Reißwölfe
- Webstühle

VERDICHTER, KOMPRESSOREN

- Kolbenkompressoren
- Turbokompressoren

WALZWERKE

- M Blechwender
- Blocktransportanlagen
- Drahtzüge М
- Entzunderungsbrecher
- Kaltwalzwerke
- Μ Kettenschlepper
- М Querschlepper
- Rollgänge
- Rohrschweißmaschinen
- Stranggussanlagen
- Walzenverstellvorrichtung

WÄSCHEREIMASCHINEN

- M Trommeltrockner
- M Waschmaschinen

WASSERAUFBEREITUNG M Kreisellüfter

G Wasserschnecken

AUSLEGUNGSFAKTOREN

Stoß- oder Lastfaktor S_A

Antriebsmaschine	Belastungskennwert der Arbeitsmaschine				
Antriedsmaschine	G	M	S		
Elektromotoren, Turbinen, Hydraulikmotoren	1,25	1,6	2,0		
Verbrennungsmotoren ≥ 4 Zylinder Ungleichförmigkeitsgrad ≥ 1:100	1,5	2,0	2,5		

G = gleichmäßige Belastung | M = mittlere Belastung | S = schwere Belastung

Temperaturfaktor S_v

mgebungs- emperatur	-40 C° +30 C°	+40 C°	+60 C°	+80 C°	> +80 C°
S_{v}	1,0	1,1	1,4	1,8	auf Anfrage

Anlauffaktor S,

Anlaufhäufig- keit pro Std.	30	60	120	240	>240
S,	1,0	1,1	1,2	1,3	auf Anfrage

NACH DEM DREHMOMENT

1. Berechnung des Antriebsmomentes T_{AN}.

$$T_{AN} \ge 9.550 \cdot \frac{P_{Antrieb}}{n}$$
 (Nm)

2. Ermittlung des Kupplungsnenndrehmomentes $T_{\rm KN}$ über das Antriebsdrehmoment $T_{\rm AN}$ unter Berücksichtigung der Auslegungsfaktoren.

$$\mathsf{T}_{\mathsf{KN}} \geq \mathsf{T}_{\mathsf{AN}} \cdot \mathsf{S}_{\mathsf{A}} \cdot \mathsf{S}_{_{\boldsymbol{\upsilon}}} \, \cdot \mathsf{S}_{_{\boldsymbol{z}}}$$

Auslegungsbeispiel:

Gesucht wird eine Kupplung zwischen E-Motor (P = 450 kW bei n = 980 min.-1) und Getriebe eines Förderbandantriebes.

$$T_{AN} = 9.550 \cdot \frac{450 \text{ kW}}{980 \text{ min.}^{-1}} = 4.385,2 \text{ Nm}$$

Betrieb ist gleichförmig = $G: S_A = 1,25$ Umgebungstemperatur $40^{\circ}C: S_{\circ} = 1,1$ Anlaufhäufigkeit

30/h : Sz = 1,0

$$T_{KN} \ge T_{AN} \qquad \cdot S_{A} \quad \cdot S_{v} \quad \cdot S_{z} T_{KN} \ge 4.385,2 \text{ Nm} \quad \cdot 1,25 \quad \cdot 1,1 \quad \cdot \quad 1,0 = 6.029,7 \text{Nm}$$

Gewählte Kupplung: ST2 / 10 mit $T_{\rm KN}$ = 6.030 Nm

DIMENSIONIERUNG

SICHERHEITSKUPPLUNGEN

ST

AUSLEGUNG FLEXIBLE ZAHNKUPPLUNG ST4

Serie	ST4 / 2	ST4 / 5	ST4 / 10	ST4 / 25	ST4 / 40	ST4 / 60	ST4 / 100	ST4 / 160	ST4 / 250
T _{KN} Nenndrehmoment (Nm)	5.700	9.000	14.500	22.000	45.000	70.000	150.000	200.000	402.000
T _{Kmax} max. Drehmoment (Nm)	14.000	21.500	35.000	54.000	110.000	170.000	360.000	480.000	804.000
n Ref (max. Drehzahl) (min1)	4.000	3.900	3.700	3.550	2.750	2.420	1.950	1.730	990

NACH DEM DREHMOMENT

1. Berechnung des Antriebsmomentes T_{AN} .

$$T_{AN} \ge 9.550 \cdot \frac{P_{Antrieb}}{n}$$
 (Nm)

2. Ermittlung des Kupplungsnenndrehmomentes $T_{\rm KN}$ über das Antriebsdrehmoment $T_{\rm AN}$ unter Berücksichtigung des Auslegungsfaktores. (Stoß- oder Lastfaktor $S_{\rm A}$ s. Seite 12)

$$T_{KN} \geq T_{AN} \cdot S_A$$

Auslegungsbeispiel:

Gesucht wird eine Kupplung zwischen E-Motor (P = 800 kW bei n = 980 min. 1) und Getriebe eines Schneckenförderers (SA = 2).

$$T_{AN} = 9.550 \cdot \frac{800 \text{ kW}}{980 \text{ min.}^{-1}} = 7.796 \text{ Nm}$$

$$T_{KN} \ge T_{AN}$$
 \cdot S_{A}
 $T_{KN} \ge 7.796 \text{ Nm}$ \cdot 2 = 15.592 Nm

Gewählte Kupplung: ST4 / 25 mit $T_{\rm KN}$ = 16.000 Nm

LAMELLENKUPPLUNGEN

ABKÜRZUNGEN

 T_{KN} = Nenndrehmoment der Kupplung (Nm)

T_{AS} = Spitzenmoment der Antriebsseite z.B. max. Beschleunigungsmoment (Nm)

max. Beschleunigungsmoment antriebsseitig (Nm)

oder max. Verzögerungsmoment lastseitig (Nm)

J_L = Maschinenträgheitsmoment (Spindel + Schlitten + Werkstück + Kupplungshälfte) (kgm²)

J_A = Antriebseite (Rotor des Motors + Kupplungshälfte) (kgm²)

 C_{T} = Torsionssteife der Kupplung (Nm/rad)

f_e = Eigenfrequenz des 2-Massen-Systems (Hz)

 f_{er} = Erregerfrequenz des Antriebs (Hz)

Φ = Verdrehwinkel (Grad)

Stoß- oder Lastfaktor S _A					
gleichförmige Belastung	ungleichförmige Belastung	stoßende Belastung			
1 2 3-4					
Für Servoantriebe an Werkzeugmaschinen sind folgende Werte üblich: S _A = 2-3					

NACH DEM DREHMOMENT

Die Kupplungen sind in den meisten Fällen nach dem höchsten, regelmäßig zu übertragenden Spitzenmoment auszulegen. Das Spitzenmoment darf das Nenndrehmoment der Kupplung nicht übersteigen. Unter Nenndrehmoment versteht man das Drehmoment, das im genannten zulässigen Drehzahl- und Versatzbereich dauernd übertragen werden kann. Als überschlägige Lösung hat sich folgende Berechnung bewährt.

$$T_{KN} \ge 1.5 \cdot T_{AS} (Nm)$$

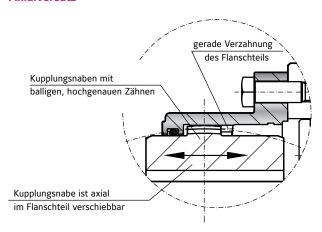
NACH DEN BESCHLEUNIGUNGSMOMENTEN

Für die genaue Auslegung sind jedoch noch die Beschleunigungs- und Trägheitsmomente der ganzen Maschine oder Anlage zu berücksichtigen.

Besonders bei Servomotoren ist zu beachten, dass deren Beschleunigungs- bzw. Verzögerungsmoment um ein Vielfaches über deren Nenndrehmoment liegt.

$$T_{KN} \geqq T_{AS} \cdot S_{A} \cdot \frac{J_{L}}{J_{A} + J_{L}} \text{ (Nm)}$$

ALLGEMEINE INFORMATIONEN ZAHNKUPPLUNGEN


ZAHNKUPPLUNGEN

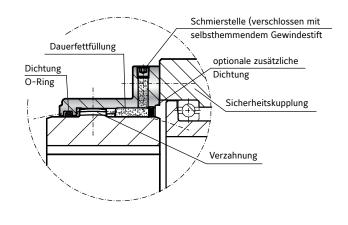
ΒZ


FUNKTION DER FLEXIBLEN ZAHNKUPPLUNG

Der Versatzausgleich der flexiblen Zahnkupplung erfolgt über die hochgenaue Verzahnung von Kupplungsnabe und Flanschteil. Diese übertragen das Drehmoment spielarm und torsionssteif. Die Geometrie und Spielfreiheit der Verzahnung beeinflussen die gesamten Eigenschaften der Kupplung. Sie ermöglichen Lateral-, Angular-, sowie Axialversatz auszugleichen.

Axialversatz

Angular- und Lateralversatz


WARTUNG UND SCHMIERUNG

▶ Achtung: Die Schmierung der Verzahnung ist für die Lebensdauer der flexiblen Zahnkupplung sehr wichtig. Eine zusätzliche optionale Dichtung sichert die Schmierung über einen langen Zeitraum.

Schmiermittel: Hochleistungsfett

ZULÄSSIGE SCHMIERMITTEL

Normale Drehzahl und Beanspruchung		Hohe Drehzahl und Beanspruchung		
Castrol	Impervia MDX	Caltex	Coupling Grease	
Esso	Fibrax 370	Klüber	Klüberplex GE 11-680	
Klüber	Klüberplex GE 11-680	Mobil	Mobilgrease XTC	
Mobil	Mobilux EPO	Shell	Albida GC1	
Shell	Alvania grease EP R-O or ER 1	Texaco	Coupling Grease	
Total	Specis EPG			

Um ein einfaches Handling zu ermöglichen, wird die Kupplung in geteiltem Zustand angeliefert.

DIMENSIONIFRUNG

ZAHNKUPPLUNGEN

ΒZ

ABKÜRZUNGEN

= Nenndrehmoment der Kupplung (Nm) T_{KN}

= Nenndrehmoment der Antriebsseite (Nm) T_{AN}

 S_A = Stoßfaktor

= Gelenkmittenmaß (mm) N

Ρ = Leistung des Antriebes (kW)

= Drehzahl (min-1)

AUSLEGUNGSFAKTOREN

Stoß- oder Lastfaktor S

Autoichemenchine	Belastungskennwert der Arbeitsmaschine				
Antriebsmaschine	G	М	S		
Elektromotoren, Turbinen, Hydraulikmotoren	1,25	1,6	2,0		
Verbrennungsmotoren ≥ 4 Zylinder Ungleichförmigkeitsgrad ≥ 1:100	1,5	2,0	2,5		

G = gleichmäßige Belastung | M = mittlere Belastung | S = schwere Belastung

ZUORDNUNG DER BELASTUNGSKENNWERTE NACH ART DER ARBEITSMASCHINE

BAGGER

- Eimerkettenbagger
- Fahrwerke (Raupen)
- Fahrwerke (Schiene)
- Saugpumpen
- Schaufelräder
- M Schwenkwerke

BAUMASCHINEN

- M Betonmischmaschinen
- M Straßenbaumaschinen

CHEMISCHE INDUSTRIE

- M Mischer
- Rührwerke (leichte Flüssigk.)
- Trockentrommeln
- Zentrifugen

FÖRDERANLAGEN

- Fördermaschinen
- Gurtbandförderer (Schüttgut)
- Gurttaschenbecherwerke
- Kettenbahnen
- M Kreisförderer
- Lastaufzüge
- Mehlbecherwerke G
- Schneckenförderer
- Schotterbecherwerke
- Stahlbandförderer
- P = Leistung der Arbeitsmaschine in Kw
- n = Drehzahl in min-1

- GEBLÄSE, LÜFTER¹
- G Gebläse (axial/radial) P:n ≤ 0,007
- Gebläse (axial/radial) P:n ≤ 0,07
- Gebläse (axial/radial) P:n > 0,07 Kühlturmlüfter P:n ≤ 0.007
- Kühlturmlüfter P:n ≤ 0,07
- Kühlturmlüfter P:n > 0,07

GENERATOREN, UMFORMER

Generatoren

GUMMIMASCHINEN

- Extruder
- Knetwerke
- Mischer
 - Walzwerke

HOLZBEARBEITUNGSMASCHINEN

G Holzbearbeitungsmaschinen

KRANANLAGEN

- Fahrwerke
- Hubwerke
- M Schwenkwerke

KUNSTSTOFFMASCHINEN

- M Mischer
- M Zerkleinerungsmaschinen

METALLBEARBEITUNGSMASCHINEN

- M Blechbiegemaschinen
- Blechrichtmaschinen

S Pressen M Scheren

- Stanzen
- Werkzeugmaschinen-Hauptantriebe

NAHRUNGSMITTELMASCHINEN

- G Abfüllmaschinen
- M Knetmaschinen
- Zuckerrohrbrecher
- M. Zuckerrohrschneider
- Zuckerrohrmühlen
- M Zuckerrübenschneider
- M Zuckerrübenwäsche

PAPIERMASCHINEN

- S Holzschneider
- Kalander
- Nasspressen
- S Saugpressen
- Saugwalzen
- Trockenzylinder

PUMPEN

- Kolbenpumpen
- Kreiselpumpen
- Plungerpumpen

STEINE, ERDEN

S Brecher

- S Drehöfen
- Hammermühlen
- Ziegelpressen

TEXTILMASCHINEN

- M Gerbfässer
- Reißwölfe
- Webstühle

VERDICHTER, KOMPRESSOREN

- Kolbenkompressoren
- Turbokompressoren

- M Blechwender
- Blocktransportanlagen
- Drahtzüge
- Entzunderungsbrecher Kaltwalzwerke S
- Kettenschlepper Μ Querschlepper
- М Rollgänge
- Rohrschweißmaschinen
- Stranggussanlagen
- Walzenverstellvorrichtung

WÄSCHEREIMASCHINEN

- M Trommeltrockner
- M Waschmaschinen
- WASSERAUFBEREITUNG
- M Kreisellüfter G Wasserschnecken

NACH DEM DREHMOMENT

1. Berechnung des Antriebsmomentes T_{AN}.

$$T_{AN} \ge 9.550 \cdot \frac{P_{Antrieb}}{n}$$
 (Nm)

2. Ermittlung des Kupplungsnenndrehmomentes $T_{\rm KN}$ über das Antriebsdrehmoment $T_{\rm AN}$ unter Berücksichtigung des Auslegungsfaktores. (Stoß- oder Lastfaktor $S_{\rm A}$ s. Seite 12)

$$\mathsf{T}_{\mathsf{KN}} \geq \mathsf{T}_{\mathsf{AN}} \cdot \mathsf{S}_{\mathsf{A}}$$

Auslegungsbeispiel:

Gesucht wird eine Kupplung zwischen E-Motor (P = 800 kW bei n = 980 min. 1) und Getriebe eines Schneckenförderers (SA = 2).

$$T_{AN} = 9.550 \cdot \frac{800 \text{ kW}}{980 \text{ min.}^{-1}} = 7.796 \text{ Nm}$$

$$T_{KN} \ge T_{AN} \cdot S_{A}$$

 $T_{KN} \ge 7.796 \text{ Nm} \cdot 2 = 15.592 \text{ Nm}$

DIMENSIONIERUNG

METALLBALGKUPPLUNGEN

BX

ABKÜRZUNGEN

 T_{KN} = Nenndrehmoment der Kupplung (Nm)

T_{AS} = Spitzenmoment der Antriebsseite z.B. max. Beschleunigungsmoment (Nm)

max. Beschleunigungsmoment antriebsseitig (Nm)

oder max. Verzögerungsmoment lastseitig (Nm)

J_L = Maschinenträgheitsmoment (Spindel + Schlitten + Werkstück + Kupplungshälfte) (kgm²)

J_A = Antriebseite (Rotor des Motors + Kupplungshälfte) (kgm²)

 C_{T} = Torsionssteife der Kupplung (Nm/rad)

 f_e = Eigenfrequenz des 2-Massen-Systems (Hz)

 f_{er} = Erregerfrequenz des Antriebs (Hz)

 ϕ = Verdrehwinkel (Grad)

Stoß- oder Lastfaktor S _A					
gleichförmige Belastung	ungleichförmige Belastung	stoßende Belastung			
1 2 3-4					
Für Servoantriebe an Werkzeugmaschinen sind folgende Werte üblich: S _A = 2-3					

NACH DEM DREHMOMENT

Die Kupplungen sind in den meisten Fällen nach dem höchsten, regelmäßig zu übertragenden Spitzenmoment auszulegen. Das Spitzenmoment darf das Nenndrehmoment der Kupplung nicht übersteigen. Unter Nenndrehmoment versteht man das Drehmoment, das im genannten zulässigen Drehzahl- und Versatzbereich dauernd übertragen werden kann. Als überschlägige Lösung hat sich folgende Berechnung bewährt:

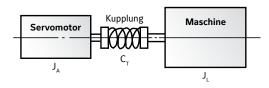
$$T_{KN} \ge 1.5 \cdot T_{AS} \text{ (Nm)}$$

NACH DEN BESCHLEUNIGUNGSMOMENTEN

Für die genaue Auslegung sind jedoch noch die Beschleunigungs- und Trägheitsmomente der ganzen Maschine oder Anlage zu berücksichtigen.

Besonders bei Servomotoren ist zu beachten, dass deren Beschleunigungs- bzw. Verzögerungsmoment um ein Vielfaches über deren Nenndrehmoment liegt.

$$T_{KN} \geqq T_{AS} \cdot S_{A} \cdot \frac{J_{L}}{J_{A} + J_{L}} \text{ (Nm)}$$


NACH DER RESONANZFREQUENZ

Die Resonanzfrequenz der Kupplung muss über oder unter der Frequenz der Anlage liegen. Für das mech. Ersatzmodell des 2-Massen-Systems gilt:

In der Praxis sollte gelten: $f_e \ge 2 \cdot f_{er}$

$$f_e = \frac{1}{2 \cdot \pi} - \sqrt{C_T \cdot \frac{J_A + J_L}{J_A \cdot J_L}} \quad (Hz)$$

2-Massen-System

NACH DEM VERDREHWINKEL

Übertragungsfehler durch Drehmomentbeanspruchung des Metallbalges:

$$\varphi = \frac{180}{\pi} \cdot \frac{\mathsf{T}_{\mathsf{AS}}}{\mathsf{C}_{\mathsf{T}}} \; \mathsf{(Grad)}$$

DIMENSIONIERUNG

ELASTOMERKUPPLUNGEN

ΕK

ABKÜRZUNGEN

 T_{KN} = Nenndrehmoment der Kupplung (Nm)

 $T_{K_{max}}$ = Maximaldrehmoment der Kupplung (Nm)

T_s = auftretendes Spitzendrehmoment an der Kupplung (Nm)

T_{AS} = Spitzendrehmoment der Antriebsseite (Nm)

T_{AN} = Nenndrehmoment der Antriebsseite (Nm)

T_{LN} = Nenndrehmoment der Abtriebsseite (Nm)

P = Leistung des Antriebes (kW)

n = Drehzahl ($min.^{-1}$)

J_A = Trägheitsmoment der Antriebsseite (kgm²) (Rotor des Motors + Kupplungshälfte)

J_L = Trägheitsmoment der Abtriebsseite (kgm²) (Spindel + Schlitten + Werkstück + Kupplungshälfe)

 J₁ = Trägheitsmoment der antriebsseitigen Kupplungshälfte (kgm²)

 J₂ = Trägheitsmoment der abtriebsseitigen Kupplungshälfte (kgm²)

m = Verhältnis der Trägheitsmomente Antriebsseite zu Abtriebsseite

 υ = Temperatur an der Kupplung (Strahlungswärme beachten)

S₀ = Temperaturfaktor

S_A = Stoßfaktor

S_z = Anlauffaktor (Faktor für die Anzahl der Anläufe/Stunde)

 Z_h = Anlaufhäufigkeit (1/h)

Temperaturfaktor S _v	A	В	E
Temperatur (v)	Sh 98 A	Sh 65 D	Sh 64 D
> -30°C bis -10°C	1,5	1,3	1,2
> -10°C bis +30°C	1,0	1,0	1,0
> +30°C bis +40°C	1,2	1,1	1,0
> +40°C bis +60°C	1,4	1,3	1,2
> +60°C bis +80°C	1,7	1,5	1,3
> +80°C bis +100°C	2,0	1,8	1,6
> +100°C bis +120°C	-	2,4	2,0
> +120°C bis +150°C	-	-	2,8

Anlauffaktor S _z			
Z _h	bis 120	120 bis 240	über 240
S _z	1,0	1,3	auf Anfrage

Stoß- oder Lastfaktor S _A							
gleichförmige Belastung	ungleichförmige Belastung	stoßende Belastung					
1	1,8	2,5					

KUPPLUNGSAUSLEGUNG BEI BETRIEB OHNE STOSS- ODER WECHSELBELASTUNG

Das Nenndrehmoment der Kupplung (T_{KN}) muss größer sein als das Nenndrehmoment der Abtriebseite (T_{LN}) unter Berücksichtigung der an der Kupplung auftretenden Temperatur (Temperaturfaktor Sv). Sollte T_{LN} unbekannt sein, kann dafür ersatzweise T_{AN} in die Formel eingesetzt werden.

Bedingung

$${\sf T_{KN}} > {\sf T_{AN}} \cdot {\sf S_{v}}$$

Nebenrechnung

$$T_{AN} = \frac{9.550 \cdot P}{n}$$

Rechenbeispiel: (Es sind keine Drehmomentstöße zu erwarten)

Kupplungsbedingungen:

 $v = 70^{\circ} \text{ C}$ $S_v = 1,7 \text{ (für 70^{\circ}/Ausführung A)}$ Antrieb: Kreiselpumpe

 $T_{AN} = 85 \text{ Nm}$

Bedingung: $T_{KN} > T_{AN} \cdot S_{\upsilon}$

 $T_{KN} > 85 \text{ Nm} \cdot 1,7$

 $T_{KN} > 144,5 \text{ Nm} \rightarrow \text{Ergebnis:}$ Es wird eine Kupplung EK 2/150/A ($T_{KN} = 160 \text{ Nm}$) gewählt.

KUPPLUNGSAUSLEGUNG BEI BEANSPRUCHUNG

Grundbedingung wie oben. Zusätzlich darf das maximal zulässige Drehmoment der Kupplung (T_{Kmax}) durch auftre-

tende Spitzendrehmomente (T_s) auf Grund abtriebsseitiger (oder antriebsseitiger) Stöße nicht überschritten werden.

Bedingung

$${\sf T_{KN}} > {\sf T_{AN}} \cdot {\sf S_{v}}$$

DURCH STOSSBELASTUNG

Bedingung

$$\rm T_{Kmax} > \rm T_S \, \cdot \, S_Z \, \cdot \, S_\upsilon$$

Nebenrechnung

$$T_{AN} = \frac{9.550 \cdot P}{n}$$

Nebenrechnung

$$T_{S} = \frac{T_{AS} \cdot S_{A}}{m + 1}$$

$$m = \frac{J_A \cdot J_1}{J_L \cdot J_2}$$

ELASTOMER-GELENKWELLEN

ΕZ

ABKÜRZUNGEN

A = Gesamtlänge (mm)

AB = Bezogene Länge (mm)

AB = (A - 2xN)

Z = Zwischenrohrlänge (mm)

Z = (A - 2xH)

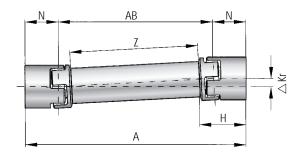
H = Ausgleichslänge (mm)

N = Gelenkmittenmaß (mm)

 $T_{\Delta S}$ = Spitzenmoment der Antriebsseite (Nm)

Φ = Verdrehwinkel (Grad)

 C_T^B = Torsionssteife beider Körper (Nm/rad)


 C_T^{ZWR} = Torsionssteife pro m Zwischenrohr (Nm/rad)

 C_{T}^{ZA} = Torsionssteife gesamt (Nm/rad)

n_k = Biegekritische Drehzahl (1/min.)

C_{Tdyn}^E = Dynamische Torsionssteife beider Elastomerkränze (Nm/rad)

 C_{Tdyn}^{EZ} = Torsionssteife gesamt (Nm/rad)

MODELL EZ

Serie	Torsionssteife beider Kupplungsteile		Torsionssteife pro 1 m Zwischenrohr	Ausgleichslänge EZ	Gelenkmittenmaß	max. Axialversatz	
	Elastomerkranz A C _T ^B (Nm/rad)	Elastomerkranz B C _T B (Nm/rad)	C _T ^{ZWR} (Nm/rad)	H (mm)	N (mm)	Δ Ka (mm)	
2500	87.500	108.000	1.000.000	142	108	5	
4500	168.500	371.500	2.500.000	181	137	5	
9500	590.000	670.000	5.000.000	229	171	6	

Tabelle 1

MAX. ÜBERTRAGBARE DREHMOMENTE IN ABHÄNGIGKEIT DES BOHRUNGSDURCHMESSERS (NM)

Serie	Ø 35	Ø 45	Ø 50	Ø 55	Ø 60	Ø 65	Ø 70	Ø 75	Ø 80	Ø 90	Ø 120	Ø 140
2500	1900	2600	2900	3200	3500	3800	4000	4300	4600	5200		
4500		5300	5800	6300	7000	7600	8200	8800	9400	10600	14100	
9500			9200	10100	11100	11900	12800	13800	14800	16700	22000	25600

TEMPERATURFAKTOR S

				Α	В
Te	mperat	ur (φ)	Sh 98 A	Sh 64 D	
>	-30°	bis	-10°	1,5	1,7
>	-10°	bis	+30°	1,0	1,0
>	+30°	bis	+40°	1,2	1,1
>	+40°	bis	+60°	1,4	1,3
>	+60°	bis	+80°	1,7	1,5
>	+80°	bis	+100°	2,0	1,8
>	+100°	bis	+120°	-	2,4

NACH DER GESAMTTORSIONSSTEIFE

Beispiel 1: Gelenkwelle EZ, Serie 4500, Stern A $T_{AS} = 5.000$ Nm Gesucht: Gesamttorsionssteife C_{T}^{EZ}

$$(C_T^{EZ}) = \frac{168.500 \text{ Nm/rad x } (2.500.000 \text{ Nm/rad } / 1,344 \text{ m})}{168.500 \text{ Nm/rad + } (2.500.000 \text{ Nm/rad } / 1,344 \text{ m})} = 154504 \text{ [Nm/rad]}$$

$$(C_{T}^{EZ}) = \frac{C_{T}^{B} \cdot (C_{T}^{ZWR}/Z)}{C_{T}^{B} + (C_{T}^{ZWR}/Z)}$$
(Nm/rad)

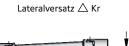
NACH DEM VERDREHWINKEL

Beispiel 2: Gelenkwelle EZ, Serie 4500 T_{AS} = 5.000 Nm Gesucht: Verdrehwinkel bei maximalem Spitzenmoment T_{AS}

Maß (A) der Gelenkwelle = 1,706 m Länge (Z) des Zwischenrohres = A - (2xH) = 1,344 m

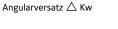
$$\varphi = \frac{180 \times 5.000 \text{ Nm}}{\pi \times 154504 \text{ Nm/rad}} = 1.85^{\circ}$$

Bei einem max. Drehmoment von 5.000 Nm ergibt sich ein Verdrehwinkel von 1,85°.


$$\phi \ = \frac{180 \, \cdot \, T_{AS}}{\pi \, \cdot \, C_{T}^{EZ}} \quad \text{(Grad)}$$

DIMENSIONIERUNG

ELASTOMER-GELENKWELLEN


ΕZ

NACH MAX. ZULÄSSIGEM VERSATZ

$$\Delta \text{ Kr}_{\text{max}} = \tan \Delta \frac{\text{Kw}}{2} \cdot \text{AB}$$

$$AB = A - 2xN$$

$$\triangle$$
 Kw_{max.} = 2°

Axialversatz riangle Ka

 \triangle Ka siehe Tabelle 1 (Seite 27)

R+W BERECHNUNGSPROGRAMM

Mit einer speziellen Berechnungssoftware kann die richtige Gelenkwelle für Ihren Anwendungsfall simuliert werden. Nebenstehende Werte sind das Ergebnis der Berechnungen. Jeder Wert kann durch die Verwendung unterschiedlicher Rohrmaterialien (AL, Stahl, CFK) verändert werden.

Gesamtgewicht m = kg Trägheitsmoment J = kgm² Zulässiger Lateralversatz $\triangle Kr = mm$

Axialversatz je Kupplungsseite \triangle Ka = Axialversatz

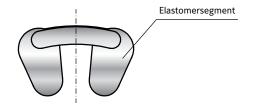
ALLEGMEINE INFORMATIONEN ELASTOMERSEGMENT ST2

ELASTISCHE-SICHERHEITSKUPPLUNG

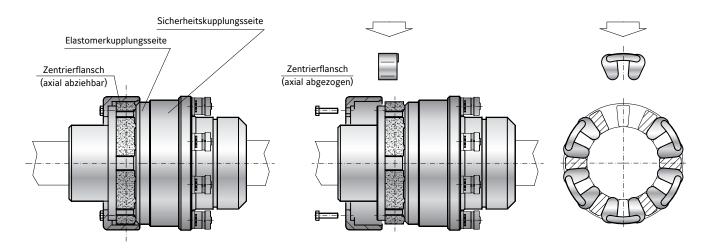
ST2

DAS ELASTOMERSEGMENT

Das Ausgleichselement der ST2 Sicherheitskupplung sind die Elastomersegmente. Diese übertragen das Drehmoment schwingungsdämpfend. Die Elastomersegmente bestimmen maßgebend die Eigenschaften der gesamten


Kupplung. Sie ermöglichen Lateral-, Angular-, sowie Axialversatz auszugleichen.

Das Standardelastomersegment ist die Ausführung A. Lieferbar sind 3x Ausführungen. Die Kupplung ist spielarm.


Ausführung	verhältnismäßige Dämpfung (ψ)	zulässiger Tempe dauer	raturbereich kurzzeitig	Werkstoff	Shorehärte	Merkmal
A (Standard)	1,0	-40°C bis +80°C	+90°C	Natur-/ Synthesekautschuk	75-80 Shore A	sehr gute Abriebfestigkeit
В	1,0	-40°C bis +100°C	+120°C	Synthesekautschuk	73-78 Shore A	beständig gegen Mineralöl und Treibstoffe
С	1,0	-70°C bis +120°C	+140°C	Silikonkautschuk	70-75 Shore A	hohe Temperaturbeständigkeit

▶ Achtung

Eine nachträgliche Anpassung der Kupplungseigenschaften ist im montiertem Zustand der Kupplung durch radial wechselbare Elastomersegmente leicht möglich. Je Kupplung werden 6x Segmente eingebaut. Es ist nicht notwending, die komplette Sicherheitskupplung zum Einbau der Elastomersegmente auszubauen.

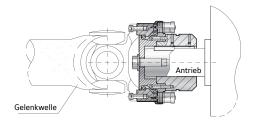
DER AUSTAUSCH DER ELASTOMERSEGMENTE

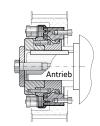
Um ein einfaches Handling zu ermöglichen, wird die Kupplung in geteiltem Zustand angeliefert.

EINBAUHINWEISE

ACHSVERSÄTZE

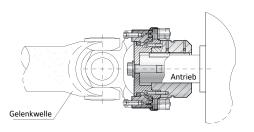
Ein genaues Ausrichten der Wellen erhöht die Lebensdauer der Kupplung erheblich, benachbarte Lager werden wenig belastet.


EINBAUHINWEISE UND EINSATZMÖGLICHKEITEN INDUSTRIEKUPPLUNGEN

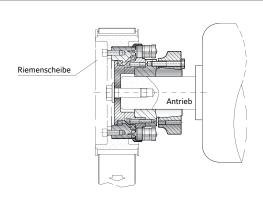

INDIREKTE ANTRIEBE

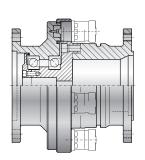
SICHERHEITSKUPPLUNGEN

Die Antriebselemente, z.B. Zahnriemenscheiben oder Kardangelenkwellen werden auf dem Anbauflansch zentriert und mit demselben verschraubt. Liegt die Radialkraft des Antriebselementes zwischen den beiden Kugeln der R+W-Sicherheitskupplung kann auf eine zusätzliche Lagerung verzichtet werden. Zulässige Maße und radiale Vorspannkräfte beachten.


ST1

MIT PASSFEDERVERBINDUNG

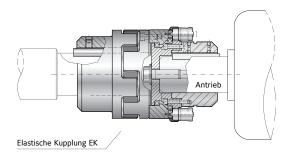

STR


BESONDERS ROBUSTE AUSFÜRHUNG

STN

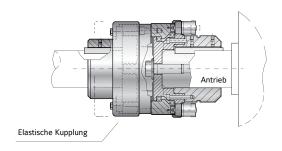
MIT KONUSKLEMMVERBINDUNG

STF

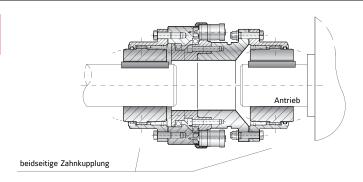

MIT FLANSCHVERBINDUNG

DIREKTE ANTRIEBE

SICHERHEITSKUPPLUNGEN


Die Sicherheitskupplungen der Modellreihe ST wurden für hohe Drehmomente ausgelegt. Möglich wird dies durch robuste Schaltsegmente, die gleichmäßig am Umfang verteilt sind. R+W Sicherheitskupplungen der Baureihe ST arbeiten als federbelastete Formschlusskupplungen. Die übertragbaren Drehmomente werden durch die Anzahl und dem Lochkreisdurchmesser der Schaltsegmente bestimmt. Im Falle einer Überlast bewegen sich die Kugeln axial aus den Kalotten und bewirken eine dauernde Freischaltung der An- und Abtriebseite. Die Wiedereinrastung erfolgt einfach durch axialen Druck auf den Schaltstößel.

STE

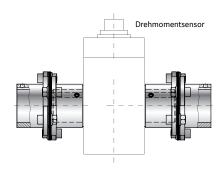

MIT PASSFEDERVERBINDUNG UND ELASTOMERKUPPLUNG

ST2

MIT PASSFEDERVERBINDUNG UND ELASTISCHER KUPPLUNG

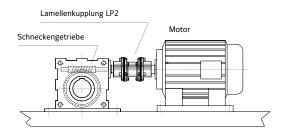
ST4

MIT PASSFEDERVERBINDUNG UND FLEXIBLER ZAHNKUPPLUNG

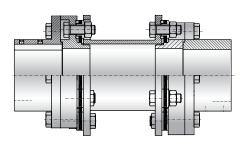

EINBAUHINWEISE UND EINSATZMÖGLICHKEITEN INDUSTRIEKUPPLUNGEN

DIREKTE ANTRIEBE

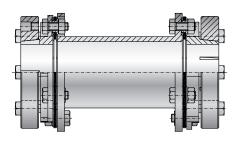
LAMELLENKUPPLUNGEN


R+W Lamellenkupplungen LP werden standardmäßig vormontiert geliefert. Somit ist eine schnelle und fehlerfreie Montage kundenseitig möglich. Die Kupplungen sind flexible Wellenkupplungen. Das Lamellenpaket gleicht Wellenversätze (axial / lateral / angular) aus. R+W Lamellenkupplungen LP übertragen das Drehmoment im Lamellenpaket ausschließlich über den Reibschluss der Spannschrauben (12.9 Qualität). Dadurch werden Mikrobewegungen in der Anbindung zur Lamelle vermieden. Die Torsionssteifigkeit der Kupplung steigt.

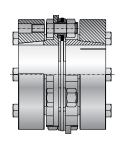
MIT PASSFEDERVERBINDUNG EINFACHKARDANISCH

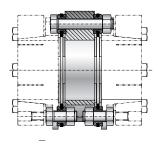


MIT PASSFEDERVERBINDUNG DOPPELKARDANISCH



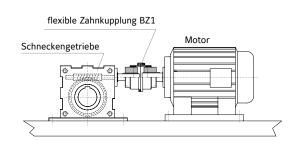
MIT PASSFEDERVERBINDUNG NACH API 610 / 671 METRISCH ODER IMPERIAL


DIREKTE ANTRIEBE


MIT KONUSKLEMMNABE DOPPELKARDANISCH

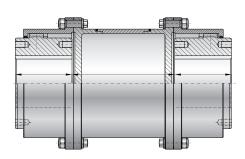
MIT KONUSKLEMMNABE EINFACHKARDANISCH

VERBINDUNGPLATTE DOPPEKARDANISCH KOMBINIERBAR MIT VERSCHIEDENEN NABENTYPEN


EINBAUHINWEISE UND EINSATZMÖGLICHKEITEN INDUSTRIEKUPPLUNGEN

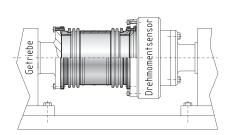
DIREKTE ANTRIEBE

FLEXIBLE ZAHNKUPPLUNGEN


Der Versatzausgleich der flexiblen Zahnkupplung erfolgt über die hochgenaue Verzahnung von Kupplungsnabe und Flanschteil. Diese übertragen das Drehmoment spielarm und torsionssteif. Die Geometrie der Verzahnung ermöglicht eine hohe Lebensdauer, auch ohne Versatz. Sie ermöglichen Lateral-, Angular-, sowie Axialversatz auszugleichen.

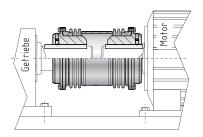
MIT PASSFEDERVERBINDUNG ODER ZYLINDRISCHER BOHRUNG ZUM AUFSCHRUMPFEN

BZA

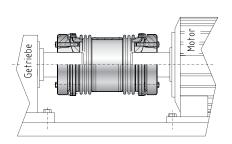

MIT ZWISCHENROHR

DIREKTE ANTRIEBE

METALLBALGKUPPLUNGEN


R+W Metallbalgkupplungen sind flexible Wellenkupplungen. Spielfreie, torsionssteife Drehmomentübertragung über den mit unterschiedlichen Naben verbundenen Metallbalg aus nicht rostendem Stahl. Der Metallbalg gleicht lateralen, axialen und angularen Wellenversatz bei geringen Rückstellkräften aus.

BX1

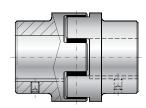

MIT FLANSCHANBINDUNG

BX4

MIT PASSFEDERVERBINDUNG

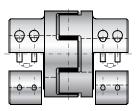
BX6

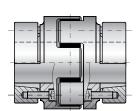
MIT KONUSKLEMMNABE


EINBAUHINWEISE UND EINSATZMÖGLICHKEITEN INDUSTRIEKUPPLUNGEN

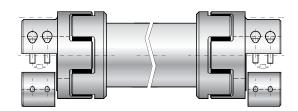
DIREKTE ANTRIEBE

ELASTOMERKUPPLUNGEN


SERVOMAX-Elastomerkupplungen sind steckbare, flexible Wellenkupplungen. Spielfreie Drehmomentübertragung durch vorgespannten Elastomerkranz. Neben dem Ausgleich von lateralem, axialem und angularem Wellenversatz kann über unterschiedliche Härtegrade des Elastomerkranzes die Steifigkeit und das Dämpfungsverhalten variiert werden. Die Verbindung zwischen Wellenzapfen und Naben kann auf unterschiedliche Weise erfolgen.


MIT PASSFEDERVERBINDUNG

MIT GETEILTER KLEMMNABE



MIT KONUSKLEMMRING

ELASTOMER-GELENKWELLEN

R+W Gelenkwellen sind flexible Wellenkupplungen zur Überbrückung größerer Wellenabstände. Die Ausgleichselemente (Elastomerkranz) kompensieren lateralen, axialen und angularen Wellenversatz. Das Drehmoment wird spielfrei und schwingungsdämpfend übertragen.

MIT GETEILTER KLEMMNABE UND ZWISCHENROHR

TORQSET® SICHERHEITSKUPPLUNGEN 200-250.000 Nm

ALLGEMEINE ANGABEN R+W-SICHERHEITSKUPPLUNGEN:

PASSUNGSSPIEL

Welle-Nabeverbindung 0,02 - 0,07 mm

TEMPERATURBEREICH

-30 bis +120° C

SONDERLÖSUNGEN

Automatische Wiedereinrastung

ATEX (Optional)

Für den Einsatz in Explosionsschutzbereichen. Auf Anfrage kurzfristig möglich.

FUNKTIONSSYSTEM

Freischaltend

TOROSET® SICHERHEITSKUPPLUNGEN

200 - 250.000 Nm

MODELLE

EIGENSCHAFTEN

ST1

mit Passfederverbindung für indirekte Antriebe von 200 – 250.000 Nm

- ▶ kompakte, einfache Bauweise
- ▶ exakte Drehmomentbegrenzung
- ▶ drehsteife Ausführung
- integrierte Lagerung für Zahnriemenscheibe oder Kettenrad

STR

mit Passfederverbindung robust von 200 – 250.000 Nm

- ▶ kompakte, extrem robuste Bauweise
- exakte Drehmomentbegrenzung
- ▶ drehsteife Ausführung
- ▶ mit integrierter Lagerung für Zahnriemenscheibe oder Kettenrad

STN

mit Konusklemmverbindung für indirekte Antriebe von 200 – 165.000 Nm

- ▶ hohe Klemmkräfte
- ▶ kompakte, einfache Bauweise
- ▶ exakte Drehmomentbegrenzung
- ▶ drehsteife Ausführung
- integrierte Lagerung für Zahnriemenscheibe oder Kettenrad

STF

mit beidseitiger Flanschverbindung von 200 – 45.000 Nm

- kompakte Bauweise und kundenspezifisches Interface für den Anbau an Drehmomentmessflansche
- ▶ exakte Drehmomentbegrenzung
- ▶ drehsteife Ausführung
- mit integrierter Lagerung für hohe Drehzahlen

Seite 44-45

Seite 46-47

Seite 48-49

Seite 50

Seite 51

Seite 52-53

Seite 54-55

MODELLE

EIGENSCHAFTEN

STE

mit Passfederverbindung und Elastomerkupplung von 200 - 14.000 Nm

▶ schwingungsdämpfend

- ► Ausgleich von Fluchtungsfehlern
- ▶ exakte Drehmomentbegrenzung
- ▶ durchschlagssicher
- ▶ steckbar

ST2

mit Passfederverbindung und elastischer Kupplung von 200 - 165.000 Nm

- ▶ hochelastisch dämpfend
- ► Ausgleich von Fluchtungsfehlern
- ▶ exakte Drehmomentbegrenzung
- ▶ durchschlagsicher
- ▶ spielarm

ST4

mit Passfederverbindung und flexibler Zahnkupplung von 200 – 250.000 Nm

- hohe LeistungsdichteAusgleich von Fluchtungsfehlern
- ▶ exakte Drehmomentbegrenzung
- ▶ geringe Rückstellkräfte
- ▶ extrem verschleißfest

Optionen / Sonderlösungen

Seite 56

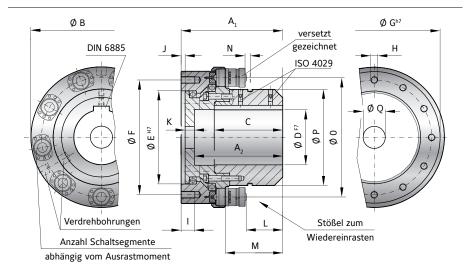
ST

Zubehör für Sicherheitskupplungen Seite 59-63

ZUBHÖR

200 - 45.000 Nm

SPEZIELLE EIGENSCHAFTEN


MATERIAL

Gehärteter Stahl (Oberfläche oxidiert)

DESIGN

► Antriebsseite: Kupplungsnabe mit Passfederverbindung (Vielkeilprofil auf Anfrage möglich)

- ▶ Abtriebseite: Anbauflansch mit Befestigungsgewinde. Die Lagerung ist integriert.
- Schaltsegmente: Am Umfang verteilt angebracht. Innerhalb des Einstellbereiches nachstellbar.

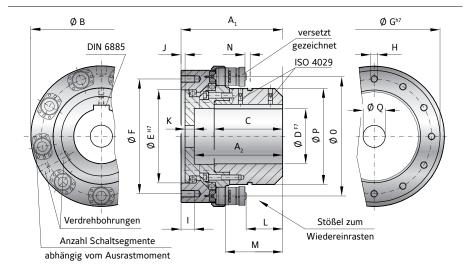
MODELL ST1 | SERIE 2-40

SERIE				2			5			10			25			40	
Einstellbereich von - bis (I	KNm)		0,2-0,5	0,5-1,0	1,0-1,5	0,7-2	1,2-4	3,2-5	2-5	4-10	6-14	6-12	9-18	15-25	12-21	22-32	32-45
eingebaute Schaltsegmente (S	ST)		3×ST10	6×ST10	6×ST10	3×ST15	6×ST15	6×ST15	3×ST15	6×ST15	9×ST15	6×ST15	9×ST15	12×ST15	6×ST30	6×ST30	9×ST30
Gesamtlänge	(mm)	A ₁		120			150			183			230			305	
Länge bis Anschlag	(mm)	A ₂		100			124			158			200			210	
Flanschdurchmesser	(mm)	В		198			220			270			318			428	
Passungslänge	(mm)	С		100			121			120			155			210	
Bohrungsdurchmesser von Ø bis Ø F7	(mm)	D		30-75			40-90			40-110			60-140			90-170	
Zentrierdurchmesser H7	(mm)	Е		132			145			170			210			270	
Lochkreisdurchmesser ±0,3	(mm)	F		162			170			220			260			330	
Außendurchmesser h7	(mm)	G		192			209			259			298			380	
Befestigungsgewinde		Н		12xM10			12xM12			12xM16			12xM16			12xM20	
Gewindelänge	(mm)	1		15			20			25			30			35	
Passungslänge	(mm)	J		3,5			4			6			8			8	
Flanschbreite	(mm)	K		15			21			17			20			28	
Abstand	(mm)	L		10,5			16,5			45			80			102	
Abstand	(mm)	М		51,5			66,5			95			130			170	
Schaltweg	(mm)	N		3,5			4,5			4			4			7,5	
Lochkreisdurchmesser ST	(mm)	0		154			171			220			270			350	
Nabenaußendurchmesser	(mm)	Р		104			120			170			218			265	
Bohrung für Befestigungsschraube	(mm)	Q	m	nax. Ø 75	i	ı	max. Ø 90)	n	nax. Ø 11	0	n	nax. Ø 14	0	n	nax. Ø 14	4
Trägheitsmoment ca. bei D max. & 9 Sgmt (10 ⁻³ k	kgm²)			77			151			370			780			3570	
max. Drehzahl (1/	/min.)			7000			6000			4200			3800			3000	
zul. max. Radialkräfte Standard	*(KN)			5			10			20			30			40	
Gewicht ca. bei D max. & 9 Sgm	it (kg)			15			24			40			63			166	

^{*} größere Radialkräfte mit verstärkter Lagerung möglich.

11.000 - 250.000 Nm

SPEZIELLE EIGENSCHAFTEN


MATERIAL

Gehärteter Stahl (Oberfläche oxidiert)

DESIGN

► Antriebsseite: Kupplungsnabe mit Passfederverbindung (Vielkeilprofil auf Anfrage möglich)

- ▶ Abtriebseite: Anbauflansch mit Befestigungsgewinde. Die Lagerung ist integriert.
- Schaltsegmente: Am Umfang verteilt angebracht. Innerhalb des Einstellbereiches nachstellbar.

MODELL ST1 | SERIE 60 - 250

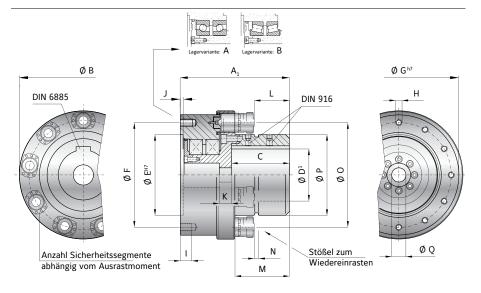
SERIE				60			100			160		2!	50
Einstellbereich von - bis	(KNm)		11-18	22-36	30-55	24-50	45-90	80-110	25-55	50-110	80-165	100-170	160-250
eingebaute Schaltsegmente	(ST)		3×ST 30	6×ST 30	9×ST 30	3×ST70	6×ST70	9×ST70	3×ST70	6×ST70	9×ST70	8×ST71	12×ST71
Gesamtlänge	(mm)	A ₁		320			396			410		53	34
Länge bis Anschlag	(mm)	A ₂		275			280			360		37	70
Flanschdurchmesser	(mm)	В		459			592			648		74	40
Passungslänge	(mm)	С		220			280			290		37	70
Bohrungsdurchmesser von Ø bis Ø F7	(mm)	D		80-200			100-250			100-290		200-	-340
Zentrierdurchmesser H7	(mm)	Е		300			390			450		50	08
Lochkreisdurchmesser ±0,3	(mm)	F		360			464			570		60	00
Außendurchmesser h7	(mm)	G		418			530			618		68	30
Befestigungsgewinde		Н		12xM20			12xM24			12xM24		12x	M36
Gewindelänge	(mm)	ı		35			40			40		6	0
Passungslänge	(mm)	J		8			10			10		1	2
Flanschbreite	(mm)	K		30			38			38		6	0
Abstand	(mm)	L		99			128			135		13	35
Abstand	(mm)	М		167			218			225		22	28
Schaltweg	(mm)	N		7,5			10			10		1	0
Lochkreisdurchmesser ST	(mm)	0		376			490			532		63	30
Nabenaußendurchmesser	(mm)	Р		295			380			418		50	08
Bohrung für Befestigungsschraube	(mm)	Q		max. Ø 200			max. Ø 216			max. Ø 290		max.	Ø 290
Trägheitsmoment ca. bei D max. & 9 Sgmt (10	³ kgm²)			4600			16.850			24.600		56.	800
max. Drehzahl (1/min.)			2500			2200			2000		12	00
zul. max. Radialkräfte Standar	rd*(KN)			50			60			100		12	20
Gewicht ca. bei D max. & 9 Sg	mt (kg)			179			403			463		8!	50

 $^{{}^{\}star}$ größere Radialkräfte mit verstärkter Lagerung möglich.

MIT PASSFEDERVERBINDUNG, ROBUST

200 - 45.000 Nm

SPEZIELLE EIGENSCHAFTEN


MATERIAL

Gehärteter Stahl (Oberfläche oxidiert)

DESIGN

► Antriebsseite: Kupplungsnabe mit Passfederverbindung (Vielkeilprofil auf Anfrage möglich)

- Abtriebsseite: Anbauflansch mit Befestigungsgewinde und verstärkter Lagerung.
- Schaltsegmente: Am Umfang verteilt angebracht. Innerhalb des Einstellbereiches nachstellbar.

MODELL STR | SERIE 2-40

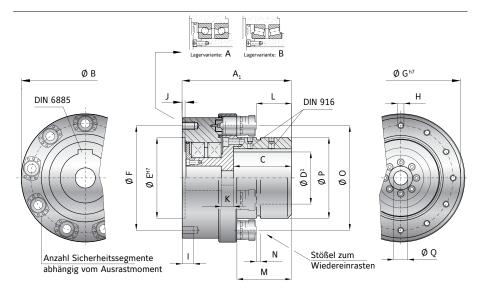
SERIE			2	2			4	4			5			10			25			40	
Einstellbereich von - bis (KNm)		0,2-0,5	0,5-1,0	1,0-1,5	1,5-3,5	0,6-0,9	1,1-1,7	1,6-2,6	2,5-5,0	0,7-2	1,2-4	3,2-5	2-5	4-10	6-14	9-12	9-18	15-25	12-21	22-32	32-45
Einstellbereich von – bis (KNm) eingebaute Schaltsegmente (ST)		3× ST11	6× ST11	6× ST11	6× ST11	3× ST11	6× ST11	9× ST11	9× ST11	3× ST16	6× ST16	6× ST16	3× ST16	6× ST16	9× ST16	6× ST16	9× ST16	12× ST16	6× ST31	6× ST31	9× ST31
Gesamtlänge (mm)	A ₁		17	70			1	98			190			230			264			335	
Flanschdurchmesser (mm)	В		19	98			2	11			220			270			318			428	
Passungslänge (mm)	С		9	5			1	20			111			122			150			191	
Bohrungsdurchmesser von Ø bis Ø F7 (mm)	D		30-	-80			40-	100			40-90			40-110			60-140)		90-170	,
Zentrierdurchmesser H7 (mm)	Е		13	32			1	36			145			170			210			270	
Lochkreisdurchmesser ±0,3 (mm)	F		16	52			1	64			170			220			260			330	
Außendurchmesser h7 (mm)	G		19	92			1	94			209			259			298			380	
Befestigungsgewinde	Н	12xM10 18				12x	M12			12xM12	2		12xM16	i		12xM16	5		12xM20)	
Gewindelänge (mm)	ı	18			2	2			22			28			30			36			
Passungslänge (mm)	J		18 4,5				3	,5			3,5			6			8			6	
Flanschbreite (mm)	K		1	6			2	0			24			32			32			48	
Abstand (mm)	L		50	0,0			81	1,5			56,0			74			97			111	
Abstand (mm)	М		81	.,0			11	2,5			96,5			115			138			171	
Schaltweg (mm)	N		3,	,5			3	,5			4,5			4,5			4,5			7,5	
Lochkreisdurchmesser ST (mm)	0		15	54			1	74			171			220			270			350	
Nabenaußendurchmesser (mm)	Р		11	12			1	38			122			170			218			265	
Bohrung für Befestigungsschraube (mm)	Q		max.	Ø 17			max.	Ø 22		m	nax. Ø 2	25	m	ıax. Ø 2	6	m	nax. Ø 3	12	m	nax. Ø 3	18
Trägheitsmoment ca. bei D max. & 9 Sgmt (10 ⁻³ kgm²)		103				1	30			168			484			1028			4107		
max. Drehzahl (1/min.)			8500				68	00			6300			5000			4000			3600	
zul. max. Radialkräfte Standard*(KN)			1	0			1	4			20			40			60			80	
Gewicht ca. bei D max. & 9 Sgmt (kg)			2	1			2	5			28			55			86			196	

 $[\]mbox{*}$ größere Radialkräfte mit verstärkter Lagerung möglich.

MIT PASSFEDERVERBINDUNG, ROBUST

11.000 - 250.000 Nm

SPEZIELLE EIGENSCHAFTEN


MATERIAL

Gehärteter Stahl (Oberfläche oxidiert)

DESIGN

► Antriebsseite: Kupplungsnabe mit Passfederverbindung (Vielkeilprofil auf Anfrage möglich)

- ► Abtriebsseite: Anbauflansch mit Befestigungsgewinde und verstärkter Lagerung.
- Schaltsegmente: Am Umfang verteilt angebracht. Innerhalb des Einstellbereiches nachstellbar.

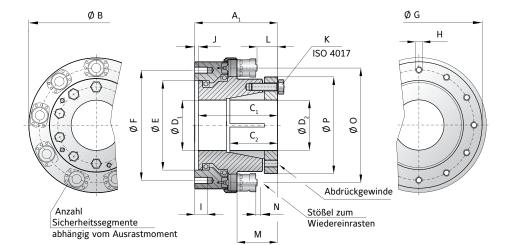
MODELL STR | SERIE 60 - 250

SERIE			60			100			160		2!	50
Einstellbereich von - bis (KNm)		11-18	22-36	30-55	24-50	45-90	80-110	25-55	50-110	80-165	100-170	160-250
eingebaute Schaltsegmente (ST)		3×ST31	6×ST31	9×ST31	3×ST71	6×ST71	9×ST71	3×ST71	6×ST71	9×ST71	8×ST71	12×ST71
Gesamtlänge (mm)	A ₁		380			470			490		60	00
Flanschdurchmesser (mm)	В		459			592			648		74	40
Passungslänge (mm)	С		220			275			282		36	51
Bohrungsdurchmesser von Ø bis Ø F7 (mm)	D		80-200			100-250			130-290		200	-340
Zentrierdurchmesser H7 (mm)	Е		300			390			450		50	08
Lochkreisdurchmesser ±0,3 (mm)	F		360			464			570		60	00
Außendurchmesser h7 (mm)	G		418			530			618		68	30
Befestigungsgewinde	Н		12xM20			12xM24			12xM24		12x	M36
Gewindelänge (mm)	1		36			40			44		6	0
Passungslänge (mm)	J		9			10			11		1	2
Flanschbreite (mm)	K		53,5			67			67		7	8
Abstand (mm)	L		143			179			189		2	73
Abstand (mm)	М		202,5			255			265		34	49
Schaltweg (mm)	N		7,5			10			10		1	0
Lochkreisdurchmesser ST (mm)	0		376			490			532		63	30
Nabenaußendurchmesser (mm)	Р		295			380			420		50	08
Bohrung für Befestigungsschraube (mm)	Q		max. Ø 44			max. Ø 44			max. Ø 52		max.	Ø 52
Trägheitsmoment ca. bei D max. & 9 Sgmt (10 ⁻³ kgm²)			5925			20000			31830		613	300
max. Drehzahl (1/min.)			3200			2200			2000		18	00
zul. max. Radialkräfte Standard*(KN)			100			130			200		24	40
Gewicht ca. bei D max. & 9 Sgmt (kg)			244			502			636		9:	78

^{*} größere Radialkräfte mit verstärkter Lagerung möglich.

MIT KONUSKLEMMVERBINDUNG

200 - 5.000 Nm


SPEZIELLE EIGENSCHAFTEN

MATERIAL

Gehärteter Stahl (Oberfläche oxidiert)

DESIGN

- ► Antriebsseite: Kupplungsnabe mit geschlitzter Konusbuchse
- ▶ Abtriebseite: Anbauflansch mit je 12x Befestigungsgewinde. Die Lagerung ist integriert.
- Schaltsegmente: Am Umfang verteilt angebracht. Innerhalb des Einstellbereiches nachstellbar.

MODELL STN | SERIE 2-5

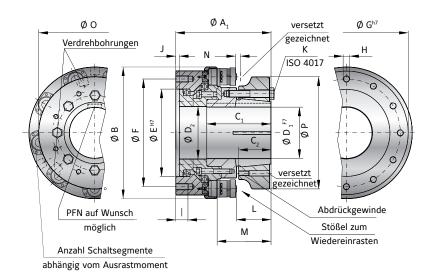
SERIE				2			5	
Einstellbereich von - bis	(KNm)		0,2-0,5	0,5-1,0	1,0-1,5	0,7-2	1,2-4	3,2-5
eingebaute Schaltsegmente (ST)			3×ST10	6×ST10	6×ST10	3× ST15	6× ST15	6× ST15
Gesamtlänge	(mm)	A ₁		124,5			160	
Flanschdurchmesser	(mm)	В		198			220	
Passungslänge / Nutlänge	(mm)	C ₁		118			155	
nutzbare Klemmlänge	(mm)	C ₂		45			82	
Bohrungsdurchmesser von Ø bis Ø F7	(mm)	D ₂		45-70			40-80	
Bohrungsdurchmesser von \emptyset bis \emptyset F7 mit Nut	(mm)	D ₂		60			70	
Zentrierdurchmesser H7	(mm)	Е		132			145	
Lochkreisdurchmesser ±0,3	(mm)	F		162			170	
Außendurchmesser h7	(mm)	G		192			209	
Befestigungsgewinde		Н		12×M10			12×M12	
Gewindelänge	(mm)	-1		15			20	
Passungslänge	(mm)	J		3			4	
Befestigungsschraube ISO 4017		K		6xM10			6xM10	
Anzugsmoment	(Nm)			59			59	
Abstand	(mm)	L		18			26,5	
Abstand	(mm)	М		56			76,5	
Schaltweg	(mm)	N		3,5			4,5	
Lochkreisdurchmesser ST	(mm)	0		154			170	
Nabenaußendurchmesser	(mm)	Р		119			136	
Trägheitsmoment ca. bei D max. & 9 Sgmt (10	0 ⁻³ kgm²)			77			151	
max. Drehzahl	(1/min.)			7000			6000	
zul. max. Radialkräfte Standard*	(KN)			5			10	
Gewicht ca. bei D max. & 9 Sgmt	(kg)			15			24	

^{*} größere Radialkräfte mit verstärkter Lagerung möglich.

MIT KONUSKLEMMVERBINDUNG

2.000 - 165.000 Nm

SPEZIELLE EIGENSCHAFTEN


MATERIAL

Gehärteter Stahl (Oberfläche oxidiert)

DESIGN

► Antriebsseite: Kupplungsnabe mit geschlitzter Konusklemmnabe

- ▶ Abtriebseite: Anbauflansch mit je 12x Befestigungsgewinde. Die Lagerung ist integriert.
- Schaltsegmente: Am Umfang verteilt angebracht. Innerhalb des Einstellbereiches nachstellbar.

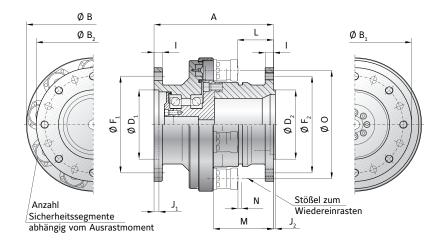
MODELL STN | SERIE 10-160

SERIE			2-5 4-10 6-14				25			40			60			160	
Einstellbereich von - bis	(KNm)		2-5	4-10	6-14	6-12	9-18	15-25	12-21	22-32	32-45	11-18	22-36	30-55	25-55	50-110	80-165
eingebaute Schaltsegmente (ST)			3×ST15	6×ST15	9×ST15	6×ST15	9×ST15	12×ST15	6×ST30	6×ST30	9×ST30	3×ST30	6×ST30	9×ST30	3×ST70	6×ST70	9×ST70
Gesamtlänge	(mm)	A ₁		210			227			286			318			425	
Flanschdurchmesser	(mm)	В		270			318			428			459			648	
Passungslänge / Nutlänge	(mm)	C ₁		147			152			191			218			305	
nutzbare Klemmlänge	(mm)	C ₂		62			67			93,5			93			125	
Bohrungsdurchmesser von Ø bis Ø F	7 (mm)	D ₁		65-110			70-150			110-170			80-200			140-290)
Bohrungsdurchmesser von \emptyset bis \emptyset Finit Nut	7 (mm)	D ₁		100			140			160			180			270	
Zentrierdurchmesser H7	(mm)	Е		170			210			270			300			450	
Lochkreisdurchmesser ±0,3	(mm)	F		220			260			330			360			570	
Außendurchmesser h7	(mm)	G	259				298			380			418			618	
Befestigungsgewinde		Н		12xM16			12xM16			12xM20			12xM20			12xM24	
Gewindelänge	(mm)	1		25			30			36			35			40	
Passungslänge	(mm)	J		6			8			9			8			11	
Befestigungsschraube ISO 4017		K		8xM16			9xM16			11xM16			8xM20			8xM24	
Anzugsmoment	(Nm)			180			180			180			570			710	
Abstand	(mm)	L		72			80			82,5			94			151	
Abstand	(mm)	М		122			127			151			163			240	
Schaltweg	(mm)	N		4			4			8			7,5			10	
Lochkreisdurchmesser ST	(mm)	0		220			270			350			376			532	
Nabenaußendurchmesser	(mm)	Р		218			278			322			378			535	
Trägheitsmoment ca. bei D max. & 9 Sgmt (10 ⁻³ kgm²)		446			789			3570			5700			30700		
max. Drehzahl	(1/min.)		4200				3800			3000			2500			2000	
zul. max. Radialkräfte Standard*	(KN)		20				30			40			50			100	
Gewicht ca. bei D max. & 9 Sgmt	(kg)			20 50			65			166			200			550	

 $^{{}^{\}star}$ größere Radialkräfte mit verstärkter Lagerung möglich.

MIT FLANSCHVERBINDUNG

200 - 45.000 Nm


SPEZIELLE EIGENSCHAFTEN

MATERIAL

Gehärteter Stahl (Oberfläche oxidiert)

DESIGN

- ► Antriebsseite: Kupplungsnabe mit Flanschverbindung
- ► Abtriebsseite: Anbauflansch mit Befestigungsgewinde. Die Lagerung ist integriert.
- ► Schaltsegmente: Am Umfang verteilt angebracht. Innerhalb des Einstellbereiches nachstellbar.

MODELL STF | SERIE 2-40

SERIE				2			5			10			25		40	
Einstellbereich von - bis eingebaute Schaltsegmente (ST)	(KNm)		0,2-0,5 C				1,2-4 6×ST15	3,2-5 6×ST15	2-5 3×ST15	4-10 6×ST15	6-14 9×ST15	6-12 6×ST15	9-18 9×ST15	15-25 12×ST15	22-32 6×ST31	32-45 9×ST31
Gesamtlänge	(mm)	Α		190			230			250			280		320	
Flanschdurchmesser	(mm)	В		198			220			270			318		428	
Flanschdurchmesser	(mm)	B ₁		170			188			230			268		340	
Flanschdurchmesser	(mm)	B ₂		170			188			230			306		390	
Zentrierdurchmesser H7	(mm)	D ₁		90			110			140			174		210	
Zentrierdurchmesser h7	(mm)	D ₂		90			110			140			200		210	
Lochkreisdurchmesser	(mm)	F ₁	130 8xØ13				155,5			196			220		304	
Befestigungsbohrungen	(mm)	F ₁				8xØ15			8xØ17			12xØ19		16xØ22		
Lochkreisdurchmesser	(mm)	F ₂		130			155,5			196			270		350	
Befestigungsgewinde	(mm)	F ₂	8	8xM12			8xM14			8xM16			12xM18		16xM20	
Flanschbreite	(mm)	-1		14			17,5			20			22		25	
Passungslänge	(mm)	J ₁		3			4			5			5		6	
Passungslänge	(mm)	J ₂		2,5			3			3,5			4		4	
Abstand	(mm)	L		45			63,5			75			83,5		105,5	
Abstand	(mm)	М		83			113,5			125			124,5		165	
Schaltweg	(mm)	N		3,5			4,5			4,5			4,5		7,5	
Trägheitsmoment ca. bei D _{max} & 9 Sgmt	(10 ⁻³ kgm²)	J.kst		83			150			380			830		3300	
max. Drehzahl	(1/min.)			9000			7500			6300			5000		3600	
zul. max. Radialkräfte Standard*	(KN)		7			12			17			22		30		
Gewicht ca. bei D _{max} & 9 Sgmt	(kg)	m.kst		20			30,4			50,3			73		180	

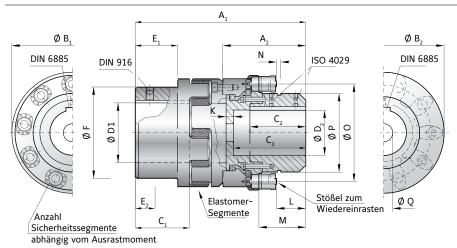
 $[\]mbox{\ensuremath{^{\star}}}$ größere Radialkräfte mit verstärkter Lagerung möglich.

STE

MIT PASSFEDERVERBINDUNG

200 - 14.000 Nm

NEU: ATEX


SPEZIELLE EIGENSCHAFTEN

MATERIAL

- ► Sicherheitsteil: Gehärteter Stahl (Oberfläche oxidiert)
- ► Elastomersegmente: TPU in verschiedenen Shorehärten
- ► Elastomerkupplungsteil: Kupplungsnaben aus GGG40

DESIGN

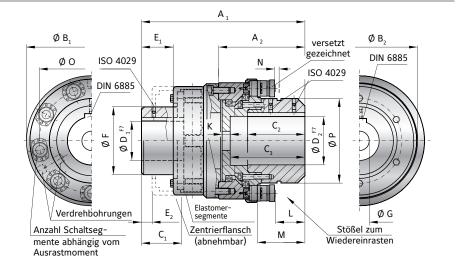
- ► Antriebsseite: Kupplungsnabe mit Passfederverbindung
- ► Abtriebsseite: Kupplungsnabe mit Passfederverbindung und Elastomersegmenten.
- ► Schaltsegmente: Am Umfang verteilt angebracht. Innerhalb des Einstellbereiches nachstellbar.

MODELL STE | SIZE 2 - 10

SERIE				2			4			5			10	
Einstellbereich von - bis	(KNm)		0,2-0,5	0,5-1,0	1,0 -1,5	0,6-0,9	1,1-1,7	1,6-2,6	0,7-2	1,2-4	3,2-5	2-5	4-10	6-14
Anzahl Sicherheitssegmente			3×ST11	6×ST11	6×ST11	3xST11	6xST11	9xST11	3×ST16	6×ST16	6×ST16	3×ST16	6×ST16	9×ST16
Elastomerkränze				2500			2500			4500			9500	
Ausführung				A/B/D			A/B/D			A/B/D			A/B/D	
Gesamtlänge ±2	(mm)	A ₁		312			360			373			460	
Länge Sicherheitsteil	(mm)	A ₂		170			198			190			230	
Flanschdurchmesser ST-Teil	(mm)	B ₁		198			211			220			270	
Flanschdurchmesser Elastomerteil	(mm)	B ₂		160			160			225			290	
Passungslänge/Nutlänge Elastomerteil	(mm)	C ₁		88			88			113			142	
Passungslänge/Nutlänge Sicherheitsteil	(mm)	C ₂		85			120			100			122	
Länge bis Anschlag Sicherheitsteil	(mm)	C ₃		95			120			111			122	
Bohrungsdurchmesser Elastomerteil ø bis ø F7	(mm)	D ₁		30-95			30-95			40-130			50-170	
Bohrungsdurchmesser Sicherheitsteil ø bis ø F7	(mm)	D ₂		30-80			40-100			40-90			40-110	
Länge	(mm)	E,		69			69			89			110	
Länge	(mm)	E ₂		36			36			47			57	
Nabendurchmesser	(mm)	F		154			154			190			240	
Flanschbreite	(mm)	K		16			20			24			32	
Abstand	(mm)	L		50			81,5			56			74	
Abstand	(mm)	М		81			112,5			97			115	
Schaltweg	(mm)	N		3,5			3,5			4,5			4,5	
Lochkreisdurchmesser ST	(mm)	0		154			174			171			220	
Nabenaußendurchmesser	(mm)	Р		112			138			122			170	
Bohrung für Befestigungsschraube	(mm)	Q		max. Ø 17			max. Ø 22			max. Ø 25			max. Ø 26	
Trägheitsmoment ca, bei D _{max} & 9 Sgmt (10-³kgm²)				145			172			337			1145	
max, Drehzahl	(1/min,)			8500			6800			6300			5000	
Gewicht ca, bei D _{max} & 9 Sgmt	(kg)		35				39			47			110	
axial	(mm)		± 3				± 3			± 4			± 5	
lateral Ausführung A / B	(mm)		0,5 / 0,3				0,5 / 0,3			0,5 / 0,3			0,6 / 0,4	
angular Ausführung A / B	(Grad)		1,5 / 1,0				1,5 / 1,0			1,5 / 1,0			1,5 / 1,0	
dyn, Torsionssteife bei T _{KN} (Ausführung A / B) (10 ³	Nm/rad)			175 / 216			175 / 216			337 / 743			1180 / 1340)

Weitere technische Informationen bezüglich der Elastomersegmente siehe Seite 97.

200 - 25.000 Nm


SPEZIELLE EIGENSCHAFTEN

MATERIAL

- ► Sicherheitsteil: Gehärteter Stahl, Oberfläche (oxidiert)
- ► Elastomersegmente: Präzise gefertigte, extrem verschleißfeste Gummimischung (75–80 Shore A)
- ► Elastomerkupplungsteil: Kupplungsnaben aus hochfestem Stahlguss (lackiert)

DESIGN

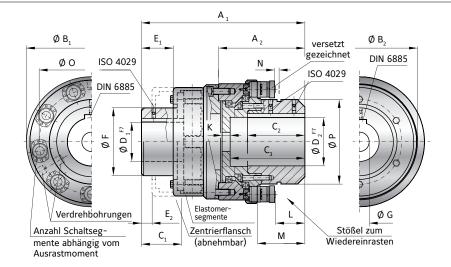
Mit Passfederverbindung (Vielkeilverbindung auf Anfrage möglich). Elastomersegmente zur Versatzaufnahme, spielarm. Schaltsegmente am Umfang verteilt angebracht. Innerhalb des Einstellbereichs nachstellbar.

MODELL ST2 | SERIE 2-25

SERIE			2			5			10			25	
Einstellbereich von - bis (KNm)		0,2-0,5	0,5-1,0	1,0 -1,5	0,7-2	1,2-4	3,2-5	2-5	4-10	6-14	6-12	9-18	15-25
eingebaute Schaltsegmente (ST)		3×ST10	6×ST10	6×ST10	3×ST15	6×ST15	6×ST15	3×ST15	6×ST15	9×ST15	6×ST15	9×ST15	12×ST15
Gesamtlänge ±2 (mm)	A ₁		264			313			360			437	
Länge Sicherheitsteil (mm)	A ₂		120			150			183			230	
Flanschdurchmesser ST-Teil (mm)	B ₁		198			220			270			318	
Flanschdurchmesser Elastomerteil(mm)	B ₂		221			250			290			330	
Passungslänge/Nutlänge Elastomerteil (mm)	C ₁		82			89			97			116	
Passungslänge/Nutlänge Sicherheitsteil (mm)	C ₂		100			121			120			155	
Länge bis Anschlag Sicherheitsteil (mm)	C ₃		100			124			158			200	
Bohrungsdurchmesser Elastomerteil Ø bis Ø F7 (mm)	D ₁		30-80			40-100			40-105			60-130	
Bohrungsdurchmesser Sicherheitsteil Ø bis Ø F7 (mm)	D ₂		30-75			40-90			40-110			60-140	
Länge (mm)	E,		65			70			70			87	
Länge (mm)	E ₂		24			23			22			26	
Nabendurchmesser (mm)	F		130			145			160			200	
Bohrung für Befestigungsschraube (mm)	G		max. Ø 75			max. Ø 90			max. Ø 110)		max. Ø 140	
Abstand (mm)	L		10,5			16,5			45			80	
Abstand (mm)	М		51,5			66,5			95			130	
Schaltweg (mm)	N		3,5			4,0			4			4	
Lochkreisdurchmesser ST (mm)	0		154			171			220			270	
Nabenaußendurchmesser (mm)	Р		104			120			170			218	
Trägheitsmoment ca. bei D max. & 9 Sgmt (10 ⁻³ kgm²)			152			289			854			1850	
max. Drehzahl (1/min.)			3400			3000			2400			2000	
Gewicht ca. bei D max. & 9 Sgmt (kg)			29			43,7			93			115	
axial (mm)			1,5			1,5			1,5			1,5	
lateral (mm)		0,3				0,4			0,4			0,5	
angular (Grad)			1			1			1			1	
dyn. Torsionssteife bei $T_{\kappa N}$ (Standardausführung A) (10 3 Nm/rad)			58			92			145			230	

^{*} größere Bohrungsdurchmesser auf Anfrage. | Weitere technische Informationen bezüglich der Elastomersegmente siehe Seite 29.

12.000 - 165.000 Nm


SPEZIELLE EIGENSCHAFTEN

MATERIAL

- ► Sicherheitsteil: Gehärteter Stahl, Oberfläche (oxidiert)
- ► Elastomersegmente: Präzise gefertigte, extrem verschleißfeste Gummimischung (75-80 Shore A)
- ► Elastomerkupplungsteil: Kupplungsnaben aus hochfestem Stahlguss (lackiert)

DESIGN

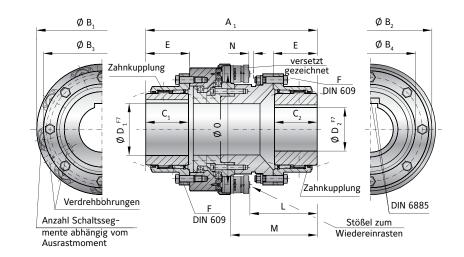
Mit Passfederverbindung (Vielkeilverbindung auf Anfrage möglich). Elastomersegmente zur Versatzaufnahme, spielarm. Schaltsegmente am Umfang verteilt angebracht. Innerhalb des Einstellbereichs nachstellbar.

MODELL ST2 | SERIE 40 - 160

SERIE			40			60			100			160	
Einstellbereich von - bis (KNm)		12-21	22-32	32-45	11-18	22-36	30-55	24-50	45-90	80-110	25-55	50-110	80-165
eingebaute Schaltsegmente (ST)		6×ST30	6×ST30	9×ST30	3×ST 30	6×ST 30	9×ST 30	3×ST70	6×ST70	9×ST70	3×ST70	6×ST70	9×ST70
Gesamtlänge ±2 (mm)	A ₁		565			580			716			730	
Länge Sicherheitsteil (mm)	A ₂		305			320			396			410	
Flanschdurchmesser ST-Teil (mm)	B ₁		428			459			592			648	
Flanschdurchmesser Elastomerteil(mm)	B ₂		432			432			553			553	
Passungslänge/Nutlänge Elastomerteil (mm)	C ₁		160			160			230			230	
Passungslänge/Nutlänge Sicherheitsteil (mm)	C ₂		170			220			280			290	
Länge bis Anschlag Sicherheitsteil (mm)	C ₃		210			275			280			360	
Bohrungsdurchmesser Elastomerteil Ø bis Ø F7 (mm)	D ₁		90-170			80-160			100-200			100-200	
Bohrungsdurchmesser Sicherheitsteil Ø bis Ø F7 (mm)	D ₂		90-170			80-200			100-250			100-290	
Länge (mm)	E ₁		113			112			152			152	
Länge (mm)	E ₂		39			39			65			65	
Nabendurchmesser (mm)	F		255			255			300			300	
Bohrung für Befestigungsschraube (mm)	G		max. Ø 144			max. Ø 200			max. Ø 216	5		max. Ø 290	
Abstand (mm)	L		102			99			128			135	
Abstand (mm)	М		170			167			218			225	
Schaltweg (mm)	N		7,5			7,5			10			10	
Lochkreisdurchmesser ST (mm)	0		350			376			490			532	
Nabenaußendurchmesser (mm)	Р		265			295			380			418	
Trägheitsmoment ca. bei D max. & 9 Sgmt (10 ⁻³ kgm²)			6010			8960			21890			36858	
max. Drehzahl (1/min.)			1800			1800			1500			1500	
Gewicht ca. bei D max. & 9 Sgmt (kg)			271			287			642			729	
axial (mm)			2			2			2,5			2,5	
lateral (mm)			0,6			0,6			0,7			0,7	
angular (Grad)			1			1			1			1	
dyn. Torsionssteife bei T_{KN} (Standardausführung A) (10 3 Nm/rad)			500			580			850			1000	

^{*} größere Bohrungsdurchmesser auf Anfrage. | Weitere technische Informationen bezüglich der Elastomersegmente siehe Seite 29.

200 - 25.000 Nm


SPEZIELLE EIGENSCHAFTEN

MATERIAL

- Sicherheitsteil: Gehärteter Stahl, Oberfläche (oxidiert)
- ▶ Beidseitige flexible Zahnkupplungen: Extrem verschleißfeste Verzahnungsgeometrie aus hochlegiertem Stahl. Oberfläche (oxidiert)

DESIGN

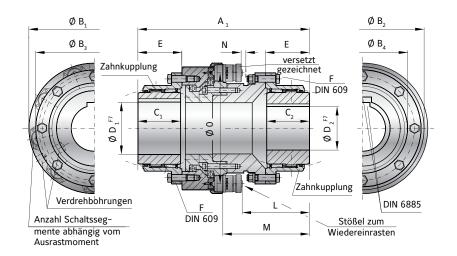
Mit Passfederverbindung (Vielkeilverbindung auf Anfrage möglich). Flexible Zahnkupplung zur Versatzaufnahme. Schaltsegmente am Umfang verteilt angebracht. Innerhalb des Einstellbereichs nachstellbar.

MODELL ST4 | SERIE 2-25

SERIE				2			5			10			25	
Einstellbereich von - bis	(kNm)		0,2-0,5	0,5-1,0	1,0-1,5	0,7-2	1,2-4	3,2-6	2-5	4-10	6-14	6-12	9-18	15-25
eingebaute Schaltsegmente (ST)			3×ST10	6×ST10	6×ST10	3×ST15	6×ST15	6 ST15	3×ST15	6×ST15	9×ST15	6×ST15	9× ST15	12×ST15
Gesamtlänge	(mm)	A ₁		280			350			390			460	
Flanschdurchmesser ST-Teil	(mm)	B ₁		198			220			270			318	
Anbauflanschdurchmesser ST-Teil	(mm)	B ₂		192			209			259			300	
Flanschdurchmesser Zahnkupplung	(mm)	B ₃		168			200			225			265	
Nabendurchmesser Zahnkupplung	(mm)	B ₄		130,5			158,4			183,4			211,5	
Passungslänge/Nutlänge	(mm)	C _{1/2}		62			76			90			105	
Bohrungsdurchmesser Ø bis Ø F7	(mm)	D _{1/2}	30-78 63.5				32-98			42-112			46-132	
Länge	(mm)	Е		63,5			78,5			92,5			108	
Passschrauben	(mm)	F		63,5 6×M8			10×M12			12×M12			12×M16	
Schraubenanzugsmoment	(mm)	,		18			65			65			150	
Abstand	(mm)	L		110			138			159,5			202	
Abstand	(mm)	М		148			188			209,5			252	
Schaltweg	(mm)	N		3,5			4,5			4,5			4,5	
Lochkreisdurchmesser ST	(mm)	0		154			171			220			270	
Trägheitsmoment ca. bei D max. & 9 Sgmt	(10 ⁻³ kgm²)			108			244			529			1117	
max. Drehzahl	(1/min.)		4000				3900			3700			3550	
Gewicht ca. bei D max. & 9 Sgmt	(kg)		25				45			65			100	
axial	(mm)		1,5				2,5			2,5			3	
angular	(Grad)			2×0,35°			2×0,35°			2×0,35°			2×0,35°	

^{*} größere Bohrungsdurchmesser auf Anfrage. | Weitere technische Informationen bezüglich der flexiblen Zahnkupplungen siehe Seite 19.

12.000 - 250.000 Nm


SPEZIELLE EIGENSCHAFTEN

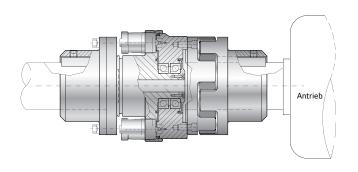
MATERIAL

- ► Sicherheitsteil: Gehärteter Stahl, Oberfläche (oxidiert)
- ▶ Beidseitige flexible Zahnkupplungen: Extrem verschleißfeste Verzahnungsgeometrie aus hochlegiertem Stahl. Oberfläche (oxidiert)

DESIGN

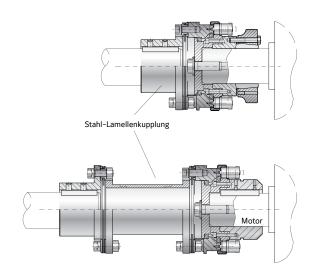
Mit Passfederverbindung (Vielkeilverbindung auf Anfrage möglich). Flexible Zahnkupplung zur Versatzaufnahme. Schaltsegmente am Umfang verteilt angebracht. Innerhalb des Einstellbereichs nachstellbar.

MODELL ST4 | SERIE 40 - 250


SERIE				40			60			100			160		25	50
Einstellbereich von - bis	(kNm)		12-21	22-32	32-45	11-18	22-36	30-55	24-50	45-90	80-110	25-55	50-110	80-165	100-170	160-250
eingebaute Schaltsegmente (ST)			6×ST30	6×ST30	9×ST30	3×ST30	6×ST30	9×ST30	3×ST70	6×ST70	9×ST70	3×ST70	6×ST70	9×ST70	8×ST71	12×ST71
Gesamtlänge	(mm)	A ₁		580			650			780			860		10	60
Flanschdurchmesser ST-Teil	(mm)	B ₁		428			459			592			648		74	10
Anbauflanschdurchmesser ST-Teil	(mm)	B ₂		399			418			560			618		72	24
Flanschdurchmesser Zahnkupplung	(mm)	B ₃		330			370			438			525		63	39
Nabendurchmesser Zahnkupplung	(mm)	B ₄		275,5			307			367			423		55	53
Passungslänge/Nutlänge	(mm)	C _{1/2}		135			150			190			220		29	90
Bohrungsdurchmesser Ø bis Ø F7	(mm)	D _{1/2}		60-174			70-190			110-233			120-280		200-	-340
Länge	(mm)	Е	139				154			194			225		29	96
Passschrauben DIN 609 12.9	(mm)	F		14×M16			14×M18			14×M22			16×M24		22×I	M24
Schraubenanzugsmoment	(mm)	,		150			220			400			520		67	70
Abstand	(mm)	L		238			275			318			360		45	8
Abstand	(mm)	М		306			343			408			450		53	34
Schaltweg	(mm)	N		8			8			10			10		1	0
Lochkreisdurchmesser ST	(mm)	0		350			376			490			532		63	30
Trägheitsmoment ca. bei D max. & 9 Sgmt (2	10 ⁻³ kgm²)			4363			6650			20611			33820		849	926
max. Drehzahl	(1/min.)		2750				2420			1950			1730		95	50
Gewicht ca. bei D max. & 9 Sgmt	(kg)		225				293			570			718		12	80
axial	(mm)		4				4			4			5		6	5
angular	(Grad)			2×0,35°			2×0,35°			2×0,35°			2×0,35°		2×0	,35°

^{*} größere Bohrungsdurchmesser auf Anfrage. | Weitere technische Informationen bezüglich der flexiblen Zahnkupplungen siehe Seite 19.

ST


OPTIONEN / SONDERLÖSUNGEN

SICHERHEITSKUPPLUNGEN - WEITERE AUSFÜHRUNGEN

FÜR EXTRUDER ANWENDUNGEN

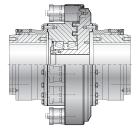
- ▶ mit ealastischer Klauenkupplung
- ▶ exakte Drehmomentübertragung
- ▶ radial montierbar

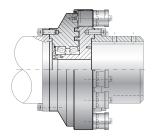
MIT TORSIONSSTEIFER LAMELLENKUPPLUNG

- ▶ einfach- oder doppelkardanisch
- ▶ hohe Torsionssteifigkeit
- ▶ mit Lamellen aus hochelastischem Federstahl

MIT TORSIONSSTEIFER METALLBALGKUPPLUNG

- mit Klemmnaben, Passfederverbindung oder Flanschanbindung
- ▶ versatzausgleichend
- ► mit Metallbalg aus hochelastischem Edelstahl


FÜR HIGHSPEED APPLIKATIONEN


- ▶ integriertes Schaltsystem
- extrem kompakt und niedriges Massenträgheitmoment
- ▶ gewuchtet für hohe Drehzahlen

BUREAU VERITAS ZERTIFIZIERT

- ▶ für Schiffsanwendungen im Binnen- und maritimen Offshorebereich
- ▶ kundenspezifische Sonderlösungen
- ▶ robuste und spezielle Bauweise für den direkten Einsatz im Schiffsantriebsstrang

WEITERE AUSFÜHRUNGEN MÖGLICH

- ▶ für 1.000.000 Nm und mehr
- ▶ kundenspezifische Sonderlösungen
- ▶ für alle Branchen und Industrien

TORQSET® SICHERHEITSKUPPLUNGEN **ZUBEHÖR**

ST

SCHALTSEGMENT

SPEZIELLE EIGENSCHAFTEN

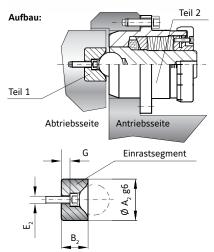
MATERIAL

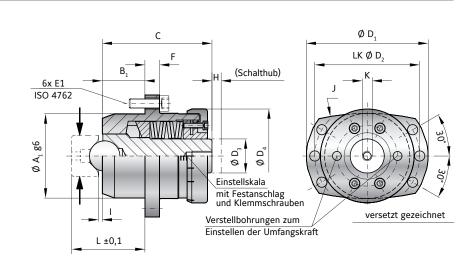
Gehärteter Stahl (Oberfläche oxidiert)

DESIGN

Zweigeteilter Aufbau zum Einbau in vorgefertigte Kupplungsteile

Teil 1: Einrastsegment


Teil 2: Schaltsegment mit federvorgespanntem Einraststößel und integrierter Rückhaltevorrichtung. Die Federvorspannung ist stufenlos einstellbar.


PASSUNGSSPIEL

Für das Einfügen der Schaltsegmente sollten H7-Bohrungen vorgesehen werden.

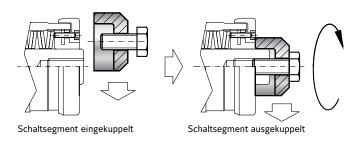
WIEDEREINRASTUNG

Bei synchroner Winkelstellung von Anund Abtriebsseite kann der Schaltstößel durch axialen Druck wieder in die Verriegelungsstellung gebracht werden.

MODELL ST | SERIE 10-70

CEDIE			10	45	20	70
SERIE			10	15	30	70
		1	0,8-2,2	1-4	5-10	8-20
Umfangskraft (kN) (Be Einstellbereich von – bis	reiche)	2	2,0-3,3	2-8	10-20	15-40
Emsterner von bis		3	3,2-8	6-15	20-32	30-70
Zentrierdurchmesser Schaltsegment g6	(mm)	A ₁	28	40	70	90
Zentrierdurchmesser Einrastsegment ge	6 (mm)	A ₂	18	24	34	44
Zentrierlänge Schaltsegment	(mm)	B ₁	15	20	35	45
Zentrierlänge Einrastsegment	(mm)	B ₂	13,5	14	22	30
Gesamtlänge	(mm)	С	56	70	103	135
Außendurchmesser	(mm)	D ₁	45	59	100	129
LK-Durchmesser	(mm)	D,	37,5	50	86	110
Durchmesser Schaltstößel	(mm)	D ₃	8	16	28	35
Außendurchmesser Skalenring	(mm)	D ₄	32	44	75	92
Schraube / Anzugsmoment ISO 4762	(mm)	Ε,	6 x M4 x 12 / 4,5 Nm	6 x M5 x 16 / 10 Nm	6 x M8 x 25 / 40 Nm	6 x M12 x 35 / 120 Nm
Schraube / Anzugsmoment ISO 4762	(mm)	Ε,	M3 x 20 4,5 Nm	M4 x 14 4,5 Nm	M6 x 20 15,5 Nm	M8 x 25 38 Nm
Flanschdicke	(mm)	F	5	7	12	16
Abstand	(mm)	G	6,5	5	8	10
Schalthub	(mm)	Н	3	4	7,5	10
Abstandsmaß	(mm)	I	1,5	2	3	4
Radius	(mm)	J	100	110	200	250
Innengewinde	(mm)	К	M5 x 10	M8 x 15	M10 x 25	M16 x 30
Abstand ± 0,1	(mm)	L	30	36	60	79
Gewicht	(kg)		0,26	0,65	2,7	6

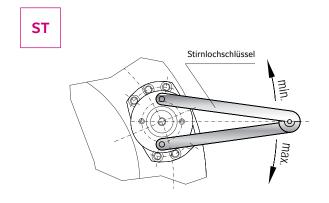
axiale Federkraft ≈ Umfangskraft/1,4


BESTELLBEISPIEL	ST	30	2	12	XX				
Modell	•								
Serie		•			Sonderanfertigungen (z.B. VA Material)				
Einstellbereich 1 / 2 / 3			•		auf Anfrage möglich.				
Umfangkraft (KN)				•					
Bei Sonderanfertigungen bitte bei der Bes	Bei Sonderanfertigungen bitte bei der Bestellung am Ende der Bestellnummer mit XX kennzeichnen und ausführlich erklären. Z.B. (ST / 30 / 2 / 12 / XX)								

ZUBEHÖR ST

TORQSET® SICHERHEITSKUPPLUNGEN

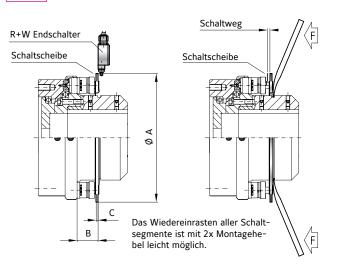
EIN- UND AUSRASTVORRICHTUNG



BESTELLNR.

SERIE	AUSRASTVORRICHTUNG
10	BestNr. AV / 0010
15	BestNr. AV / 0015
30	BestNr. AV / 0030
70	BestNr. AV / 0070

STIRNLOCHSCHLÜSSEL

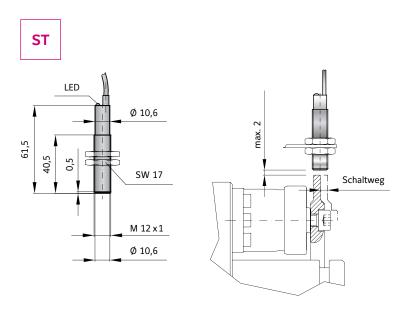


BESTELLNR.

SERIE	STIRNLOCHSCHLÜSSEL
10	BestNr. SLS / 0010
15	BestNr. SLS / 0015
30	BestNr. SLS / 0030
70	BestNr. SLS / 0070

SCHALTSCHEIBE

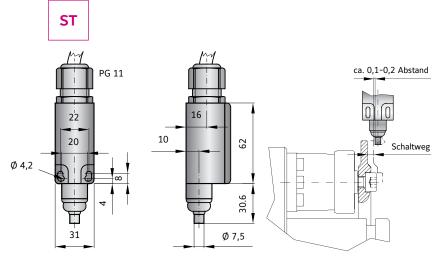
Schaltscheiben für alle Größen und Serien optional erhältlich.


Maße bitte anfragen.

ZUBEHÖR ST

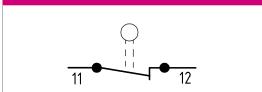
TOROSET® SICHERHEITSKUPPLUNGEN

Die Schalterfunktion muss nach der Montage auf jeden Fall zu 100 % überprüft werden.


NÄHERUNGSSCHALTER (NOT-AUS-FUNKTION)

BESTELLNR. 650.2703.001 TECHNISCHE DATEN ST

TECHNISCHE DATEN	ST
Spannungsbereich	10 bis 30 V DC
Max. Ausgangsstrom	200 mA
Max. Schaltfrequenz	800 Khz
Temperaturbereich	-25° bis +70° C
Schutzart	IP 67
Schaltersymbol	PNP Öffner
Schalterabstand	max. 2 mm
SCHALTSYMBOL ST	

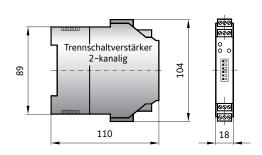

MECHANISCHER ENDSCHALTER (NOT-AUS-FUNKTION)

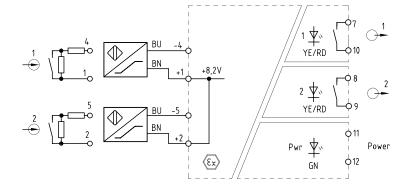
BESTELLNR. 618.6740.644

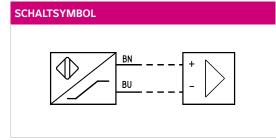
SW

TECHNISCHE DATEN	ST
Max. Spannung	250 V AC
Max. Dauerstrom	2,5 A
Schutzart	IP 65
Kontaktart	Öffner (zwangstrennend)
Umgebungstemperatur	-30° bis +80° C
Bestätigung	Stößel (Metall)
SCHALTSYMBOL ST	

Der Schalterstößel (Abb. oben rechts) sollte möglichst nahe an die Schaltscheibe der Sicherheitskupplung gestellt werden (ca. 0,1 - 0,2). Schaltscheibe optional erhältlich.


Die Schalterfunktion muss nach der Montage auf jeden Fall zu 100 % überprüft werden.


ATEX ENDSCHALTER (NOT-AUS-FUNKTION)


ST Schaltweg Schaltweg Ø 10.6 M12x1

BESTELLNR.

EEX. 1624.004

Technische Daten auf Anfrage.

TORSIONSSTEIFE LAMELLENKUPPLUNGEN 350 – 50.000 Nm

TORSIONSSTEIFE LAMELLENKUPPLUNGEN

350 - 50.000 Nm

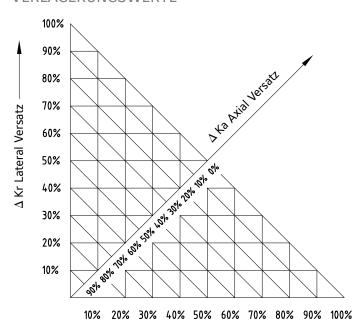
MODELLE	EIGENSCHAFTEN	
LP1	mit Passfederverbindung von 350 - 50.000 Nm	Seite 68-69
	 extrem hohe Torsionssteifigkeit einfachkardanische Bauform robuste, kompakte Ausführung Ausgleich von axialen und angularen Versätzen 	
LP2	mit Passfederverbindung von 350 - 50.000 Nm	Seite 70-71
	 hohe Torsionssteifigkeit doppelkardanische Ausführung Gesamtlänge auf Wunsch variabel Ausgleich von axialen, lateralen und angularen Versätzen 	
LPA	mit Passfederverbindung für API Standard Antriebe von 500 - 24.000 Nm	Seite 72-73
LPAI	 API 610 / 671 Zwischenstück radial montierbar Fangsicherung und Notlaufeigenschaften bei Lamellenbruch Metrische oder imperiale Ausführungen 	
LP3	mit Konusklemmnabe von 500 - 50.000 Nm	Seite 74
	 hohe Torsionssteifigkeit hohe Klemmkräfte spielfreie Drehmomentübertragung für Reversierantriebe 	
LP4	mit Konusklemmnabe von 500 - 50.000 Nm	Seite 75
边	 extrem hohe Torsionssteifigkeit einfach kardanische Bauform kompakte Ausführung 	
LPZ CONTRACTOR	Verbindungsplatte von 500 - 50.000 Nm	Seite 76
	 sehr hohe Torsionssteifigkeit doppelkardanische Bauform kombinierbar mit verschiedenen Nabentypen 	

Optionen / Sonderlösungen

Seite 77

LP

DESIGN


LAMELLENKUPPLUNGEN

R+W Lamellenkupplungen übertragen das Drehmoment im Lamellenpaket über den Reibschluss. Dadurch werden Mikrobewegungen in der Anbindung zur Lamelle vermieden.

Die Steifigkeit der gesamten Kupplung steigt.

VERLAGERUNGSWERTE

 Δ Kw Angular Versatz

 Δ Kgesamt = Δ Kr + Δ Kw + Δ Ka \leq 100%

Der maximale Versatzausgleich der Lamellenpräzisionskupplungen darf 100% nicht überschreiten.

Je nach Versatz (axial / lateral / angular) müssen die Werte aus dem Diagramm entnommen werden.

Die Gesamtsumme der einzelnen Versatzwerte in Prozent dürfen die 100% nicht überschreiten.

Beispiel: Pumpenanwendung

Versatz axial: 20% Versatz lateral: 40% Versatz angular: 40% Δ Kgesamt = 20% + 40% + 40% ≤ 100%

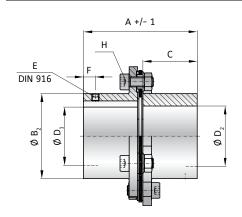
➤ Kupplung ist Lebensdauerfest

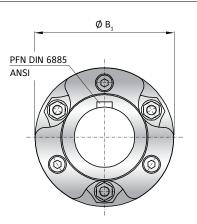
350 - 5.000 Nm

SPEZIELLE EIGENSCHAFTEN

EIGENSCHAFTEN

- ▶ extrem hohe Torsionssteifigkeit
- ▶ einfachkardanische Bauform
- ▶ wartungsfrei & lebensdauerfest


MATERIAL


► Lamellenpaket: Hochelastischer Federstahl

▶ Naben: Hochfester Stahl

DESIGN

Zwei mit hoher Präzision gefertigte Kupplungsnaben, die mittels Buchsen und hochfesten Schrauben mit dem Lamellenpaket verbunden sind. Axiale Fixierung der Naben über Klemmschrauben DIN 916.

MODELL LP1 | SERIE 300 - 2500

SERIE			300	500	700	800	2000	2500
Nenndrehmoment	(Nm)	T _{KN}	350	500	700	800	2000	2500
Max. Drehmoment	(Nm)	T _{Kmax}	700	1000	1400	1600	4000	5000
Gesamtlänge	(mm)	Α	95	95	116	116	158	160
Außendurchmesser	(mm)	B ₁	99	115	128	141	150	188
Nabendurchmesser	(mm)	B ₂	63	71	78	84	86	102
Passungslänge	(mm)	С	45	45	55	55	75	76
Bohrungsdurchmesser möglich von Ø bis Ø H7	(mm)	D _{1/2}	18-48	23 - 50	25-58	25 - 60	28-64	31 - 75
Klemmschrauben (DIN916)		Е	M5	M6	M5	M6	M5	M8
Abstand	(mm)	F	15	7	15	10	20	14
Spannschrauben (ISO 4762) Spannmutter (DIN 934))	н	M8	M8	M10	M10	M16	M16
Anzugsmoment	(Nm)		41	41	83	83	355	355
Trägheitsmoment (10 ⁻³	kgm²)	J _{ges.}	1,8	3,1	5,6	8,1	13,9	30
Material			Stahl	Stahl	Stahl	Stahl	Stahl	Stahl
Masse ca.	(kg)		2	2,7	3,8	4,8	6,7	10,5
Torsionssteife (10 ³ Nn	n/rad)	C _T	470	500	1200	1250	1500	1700
axial ±	(mm)		0,5	0,6	0,75	0,8	1	1,1
angular ± ((Grad)		0,7	0,7	0,7	0,7	0,7	0,7
max. Drehzahl (1	/min.)		10000	10000	8000	8000	6000	6000

BESTELLBEISPIEL	LP1	800	116	25	56	XX				
Modell	•									
Serie		•				Sonderanfertigungen				
Gesamtlänge mm			•			(z.B. gewuchtete Ausführung)				
Bohrungs Ø D1 H7				•		auf Anfrage möglich.				
Bohrungs Ø D2 H7					•	1				
Bei Sonderanfertigungen bitte be	Bei Sonderanfertigungen bitte bei der Bestellung am Ende der Bestellnummer mit XX kennzeichnen und ausführlich erklären. Z.B. (LP1 / 800 / 116 / 25 / 56 / XX)									

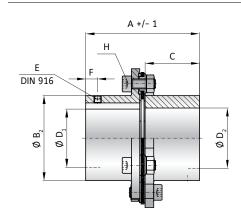
4.500 - 50.000 Nm

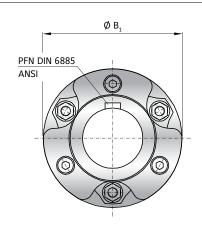
SPEZIELLE EIGENSCHAFTEN

EIGENSCHAFTEN

- ▶ extrem hohe Torsionssteifigkeit
- ▶ einfachkardanische Bauform
- ▶ wartungsfrei & lebensdauerfest

MATERIAL


► Lamellenpaket: Hochelastischer Federstahl


▶ Naben: Hochfester Stahl

DESIGN

Zwei mit hoher Präzision gefertigte Kupplungsnaben, die mittels Buchsen und hochfesten Schrauben mit dem Lamellenpaket verbunden sind. Axiale Fixierung der Naben über Klemmschrauben DIN 916.

50.000 Nm auf Anfrage

MODELL LP1 | SERIE 4000 - 12000

SERIE			4000	5000	7000	8000	10000	12000
Nenndrehmoment	(Nm)	T _{KN}	4500	5000	7600	8000	10000	12000
Max. Drehmoment	(Nm)	T _{Kmax}	9000	10000	15200	16000	20000	24000
Gesamtlänge	(mm)	Α	193	193	216	216	268	268
Außendurchmesser	(mm)	B ₁	198	227	238	294	298	320
Nabendurchmesser	(mm)	B ₂	120	130	140	160	194	192
Passungslänge	(mm)	С	90	90	100	100	125	125
Bohrungsdurchmesser möglich von Ø bis Ø F		D _{1/2}	38-90	39 - 95	50-102	50 - 115	70-140	70 - 140
Klemmschrauben (DIN	1916)	Е	M8	M10	M10	M10	M12	M12
Abstand	(mm)	F	20	15	25	15	30	20
Spannschrauben (ISO Spannmutter (DIN 934		Н	M20	M20	M24	M24	M24	M24
Anzugsmoment	(Nm)		690	690	1200	1200	1200	1200
Trägheitsmoment	(10 ⁻³ kgm ²)	J _{ges.}	52,2	90	127	278	412	534
Material			Stahl	Stahl	Stahl	Stahl	Stahl	Stahl
Masse ca.	(kg)		13,3	20	20,9	37	41,4	57,8
Torsionssteife (10 ³ Nm/rad)	C _T	3600	4000	6000	6000	13300	14000
axial ±	(mm)		1,25	1,25	1,25	1,25	1,5	1,5
angular ±	(Grad)		0,7	0,7	0,7	0,7	0,7	0,7
max. Drehzahl	(1/min.)		5000	5000	4500	4500	4000	4000

BESTELLBEISPIEL	LP1	7000	216	58	88	XX		
Modell	•							
Serie		•				Sonderanfertigungen		
Gesamtlänge mm			•			(z.B. gewuchtete Ausführung)		
Bohrungs Ø D1 H7				•		auf Anfrage möglich.		
Bohrungs Ø D2 H7					•			
Bei Sonderanfertigungen bitte bei der Bestellung am Ende der Bestellnummer mit XX kennzeichnen und ausführlich erklären. Z.B. (LP1 / 7000 / 216 / 58 / 88 / XX)								

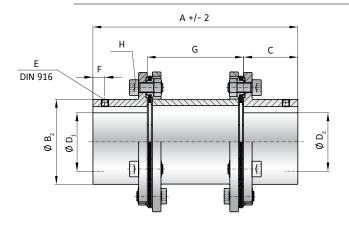
350 - 5.000 Nm

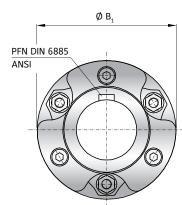
SPEZIELLE EIGENSCHAFTEN

EIGENSCHAFTEN

- ▶ hohe Torsionssteifigkeit
- ▶ doppelkardanische Bauform
- ▶ andere Längen auf Anfrage

MATERIAL


- ► Lamellenpaket: Hochelastischer Federstahl
- ► Naben und Zwischenstück: Hochfester Stahl


DESIGN

Zwei mit hoher Präzision gefertigte Kupplungsnaben und Zwischenrohraufnahmen, die mittels Buchsen und hochfesten Schrauben mit den Lamellenpaketen verbunden sind. Axiale Fixierung der Naben über Klemmschrauben DIN 916.

MODELL LP2 | SERIE 300 - 2500

SERIE			300	500	700	800	2000	2500
Nenndrehmoment	(Nm)	T _{KN}	350	500	700	800	2000	2500
Max. Drehmoment	(Nm)	T _{Kmax}	700	1000	1400	1600	4000	5000
Gesamtlänge	(mm)	Α	170	170	206	206	286	286
Außendurchmesser	(mm)	B ₁	99	116	128	142	150	190
Nabendurchmesser	(mm)	B ₂	63	71	78	84	86	102
Passungslänge	(mm)	С	45	45	55	55	75	76
Bohrungsdurchmesser möglich von Ø bis Ø H7	7 (mm)	D _{1/2}	18-48	23 - 50	25-58	25 - 60	28-64	31 - 75
Klemmschrauben (DIN9	16)	Е	M5	M6	M5	M6	M6	M8
Abstand	(mm)	F	15	7	15	10	20	14
Einfügelänge	(mm)	G	80	80	96	96	136	134
Spannschrauben (ISO 4 Spannmutter (DIN 934)	762)	Н	M8	M8	M10	M10	M16	M16
Anzugsmoment	(Nm)		41	41	83	83	355	355
Trägheitsmoment (10 ⁻³ kgm²)	J _{ges.}	3	6	7	15,3	25	55,5
Material			Stahl	Stahl	Stahl	Stahl	Stahl	Stahl
Masse ca.	(kg)		3	4,4	4,7	7,6	11	16,2
Torsionssteife (10	0³Nm/rad)	C _T	220	230	550	570	700	900
axial ±	(mm)		1	1	1,5	1,5	2	2
ateral ±	(mm)		0,8	0,8	1	1	1,4	1,4
angular ±	(Grad)		1	1	1	1	1	1
max. Drehzahl	(1/min.)		10000	10000	8000	8000	6000	6000

Sonderanfertigungen						
(z.B. anderer Wellenabstand)						
auf Anfrage möglich.						
: / 5						

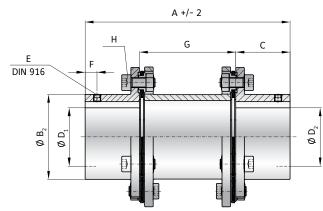
4.500 - 50.000 Nm

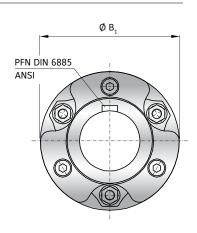
SPEZIELLE EIGENSCHAFTEN

EIGENSCHAFTEN

- ▶ hohe Torsionssteifigkeit
- ▶ doppelkardanische Bauform
- ▶ andere Längen auf Anfrage

MATERIAL


- ► Lamellenpaket: Hochelastischer Federstahl
- ► Naben und Zwischenstück: Hochfester Stahl


DESIGN

Zwei mit hoher Präzision gefertigte Kupplungsnaben und Zwischenrohraufnahmen, die mittels Buchsen und hochfesten Schrauben mit den Lamellenpaketen verbunden sind. Axiale Fixierung der Naben über Klemmschrauben DIN 916.

50.000 Nm auf Anfrage

MODELL LP2 | SERIE 4000 - 12000

SERIE			4000	5000	7000	8000	10000	12000
Nenndrehmoment	(Nm)	T _{KN}	4500	5000	7600	8000	10000	12000
Max. Drehmoment	(Nm)	T _{Kmax}	9000	10000	15200	16000	20000	24000
Gesamtlänge	(mm)	Α	320	340	370	400	470	470
Außendurchmesser	(mm)	B ₁	198	231	238	298	298	324
Nabendurchmesser	(mm)	B ₂	120	130	140	160	194	192
Passungslänge	(mm)	С	90	90	100	100	125	125
Bohrungsdurchmesser möglich von Ø bis Ø H7	(mm)	D _{1/2}	38-90	39 - 95	50-102	50 - 115	70-140	70 - 140
Klemmschrauben (DIN916)		Е	M8	M10	M10	M10	M12	M12
Abstand	(mm)	F	20	15	25	15	30	20
Einfügelänge	(mm)	G	140	160	170	200	220	220
Spannschrauben (ISO 4762) Spannmutter (DIN 934))	н	M20	M20	M24	M24	M24	M24
Anzugsmoment	(Nm)		690	690	1200	1200	1200	1200
Trägheitsmoment (10 ⁻³	kgm²)	J _{ges.}	89,3	170	230	553	721	933
Material			Stahl	Stahl	Stahl	Stahl	Stahl	Stahl
Masse ca.	(kg)		20,7	31,9	35	60,3	68,8	85,4
Torsionssteife (10 ³ Nr	n/rad)	C _T	1700	1900	2800	3100	6200	7000
axial ±	(mm)		2,5	2,5	2,5	2,5	3	3
lateral ±	(mm)		1,4	1,5	1,6	1,6	2,2	2,2
angular ± ((Grad)		1	1	1	1	1	1
max. Drehzahl (1	/min.)		5000	5000	4500	4500	4000	4000

BESTELLBEISPIEL	LP2	7000	370	52	88	XX						
Modell	•					Sonderanfertigungen (z.B. anderer Wellenabstand)						
Serie		•										
Gesamtlänge mm			•									
Bohrungs Ø D1 H7		auf Anfrage möglic										
Bohrungs Ø D2 H7					•	1						
Bei Sonderanfertigungen bitte bei der Bestellung am Ende der Bestellnummer mit XX kennzeichnen und ausführlich erklären. Z.B. (LP2 / 7000 / 370 / 52 / 88 / XX)												

MIT PASSFEDERVERBINDUNG API 610 - METRISCH

500 - 24,000 Nm

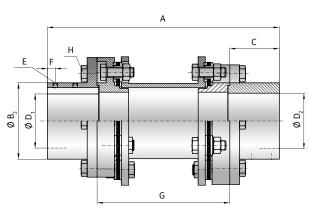
(API 671 OPTIONAL)

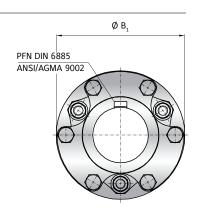
SPEZIELLE EIGENSCHAFTEN

EIGENSCHAFTEN

- radiale Montage ohne Verschieben der
- ► Fangsicherung für Zwischenteil
- ► Kupplungen erfüllen standardmäßig Wuchtgüte ANSI/AGMA 9000 Klasse 9

MATERIAL


▶ Lamellenpaket: Hochelastischer Federstahl


▶ Naben und Zwischenstück:

Hochfester Stahl

DESIGN

Zwei mit hoher Präzision gefertigte Kupplungsnaben und Zwischenrohraufnahmen, die mittels Buchsen und hochfesten Schrauben mit den Lamellenpaketen verbunden sind. Axiale Fixierung der Naben über Klemmschrauben DIN 916.

MODELL LPA | SERIE 500 - 12000

SERIE		500		800		2500		5000		8000	12000
enndrehmoment (kW/100rpm) P _{KN}		5		8		26,2		52		84	126
Nenndrehmoment (Nm)	T _{KN}	500		800		2500		5000		8000	12000
Max. Drehmoment (Nm)	T _{Kmax}	10	00	16	00	500	00	10000		16000	24000
Gesamtlänge (mm)	Α	190	230	250	290	332	402	360	430	450	500
Außendurchmesser (mm)	B ₁	1:	16	14	12	19	0	231		298	324
Nabendurchmesser (mm)	B ₂	7	1	84 102		2	130		160	192	
Passungslänge (mm)	С	4	5	5	5	7!	5	91	כ	100	125
Bohrungsdurchmesser möglich von Ø bis Ø H7 (mm)	D _{1/2}	23 -	- 50	25 -	- 60	31 -	75	39 - 95		50 - 115	70 - 140
Klemmschrauben (DIN916)	Е	2 ×	M6	2 × M6		2 × M8		2 × M10		2 × M10	2 × M12
Abstand (mm)	F	7	7	1	0	14	1	15		15	20
Zwischenstücklänge (ISO) (mm)	G	100	140	140	180	180	250	180	250	250	250
Spannschrauben (ISO 4017) Spannmutter (DIN 4032)	Н	N	18	M10		M16		M20		M24	M24
Anzugsmoment (Nm)		4	1	8	3	35	5	690		1200	1200
Trägheitsmoment (10 ⁻³ kgm²)		8	8,4	21,8	22,3	85,8	88,4	248	256	901	1350
Material		St	ahl	Sta	ahl	Sta	hl	Stahl		Stahl	Stahl
Masse (kg)		5	5,4	9,2	9,6	20,8	22	39	41	83	105
axial ± (mm)		0,	75	1	L	1,	3	1,5		1,7	2
lateral ± (mm)		0,7	1,1	1	1,5	1,3	2	1,1	1,9	1,5	1,5
angular ± (Grad)		1	0	1	0	1	•	1°		1°	1°
Drehzahl (1/min.)		76	00	64	00	530	5300 390		00	3100	2500
Drehzahl (Gewuchtet) (1/min.)		188	300	151	100	128	00	9800		8100	6200

BESTELLBEISPIEL	LPA	800	250	42	38	XX					
Modell	•										
Serie		•				Sonderanfertigungen					
Gesamtlänge mm			•			(z.B. anderer Wellenabstand)					
Bohrungs Ø D1 H7				•		auf Anfrage möglich.					
Bohrungs Ø D2 H7					•						
Bei Sonderanfertigungen bitte be	ei der Bestellung am E	nde der Bestellnumm	er mit XX kennzeichne	n und ausführlich erkl	ären. Z.B. (LPA / 800	/ 250 / 42 / 38 / XX)					

MIT PASSFEDERVERBINDUNG API 610 - IMPERIAL

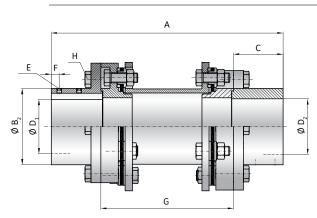
500 - 24.000 Nm

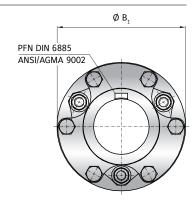
(API 671 OPTIONAL)

SPEZIELLE EIGENSCHAFTEN

EIGENSCHAFTEN

- radiale Montage ohne Verschieben der
- Fangsicherung für Zwischenteil
- ► Kupplungen erfüllen standardmäßig Wuchtgüte ANSI/AGMA 9000 Klasse 9


MATERIAL


▶ Lamellenpaket: Hochelastischer Federstahl

▶ Naben und Zwischenstück: Hochfester Stahl

DESIGN

Zwei mit hoher Präzision gefertigte Kupplungsnaben und Zwischenrohraufnahmen, die mittels Buchsen und hochfesten Schrauben mit den Lamellenpaketen verbunden sind. Axiale Fixierung der Naben über Klemmschrauben DIN 916.

MODELL LPAI | SERIE 500 - 12000

SERIE		5(00	80	00	25	00	50	00	8000	12000
Nenndrehmoment (kW/100rpm)	P _{KN}	ĩ	5	8	3	26	,2	5	2	84	126
Nenndrehmoment (Nm)	T _{KN}	50	500		800		2500		00	8000	12000
Max. Drehmoment (Nm)	T _{Kmax}	10	1000		00	50	00	100	000	16000	24000
Gesamtlänge (mm)	Α	217	268	237	288	330	381	358	409	429	479
Außendurchmesser (mm)	B ₁	1:	16	14	42	19	10	23	1	298	324
Nabendurchmesser (mm)	B ₂	7	1	8	4	10	12	13	10	160	192
Passungslänge (mm)	С	4	5	5	5	7	5	9	0	100	125
Bohrungsdurchmesser möglich von Ø bis Ø H7 (mm)	D _{1/2}	23 -	- 50	25 -	- 60	31 -	75	39 -	95	50 - 115	70 - 140
Klemmschrauben (ASME)	Е	2 × 1/	4"-20	2 × 1/	4"-20	2 × 5/1	6"-18	2 × 3/	8"-16	2 × 1/2"-13	2 × 1/2"-13
Abstand (mm)	F	7	,	1	0	1	4	1	5	15	20
Zwischenstücklänge (API 610)(mm)	G	127/5"	178/7"	127/5"	178/7"	178/7"	229/9"	178/7"	229/9"	229/9"	229/9"
Spannschrauben (ASME) Spannmutter (ASME)	Н	5/16'-18		3/8' -16		5/8'	-11	3/4'	-10	1"-8	1"-8
Anzugsmoment (Nm)		3	8	6	8	32	0	59)5	1100	1100
Trägheitsmoment (10 ⁻³ kgm²)		8,3	8,8	21	22,3	85	87	248	254	890	1344
Material		Sta	ahl	Sta	ahl	Sta	ıhl	Sta	hl	Stahl	Stahl
Masse (kg)		5,3	5,7	9,1	9,6	20,8	21,6	38,9	40	82,3	104
axial ± (mm)		0,	75	1	1	1,	3	1,5		1,7	2
lateral ± (mm)		1	1,5	0,9	1,4	1,3	1,8	1,1	1,6	1,3	1,3
angular ± (Grad)		1°		1	1°		0	1°		1°	1°
Drehzahl (1/min.)		76	00	64	00	53	00	39	00	3100	2500
Drehzahl (Gewuchtet) (1/min.)		188	300	151	100	128	00	98	00	8100	6200

BESTELLBEISPIEL	LPAI	800	237	25,4	50,8	XX				
Modell	•									
Serie		•				Sonderanfertigungen				
Gesamtlänge mm			•			(z.B. anderer Wellenabstand)				
Bohrungs Ø D1 H7				•		auf Anfrage möglich.				
Bohrungs Ø D2 H7					•					
Bei Sonderanfertigungen bitte bei der Bestellung am Ende der Bestellnummer mit XX kennzeichnen und ausführlich erklären. Z.B. (LPAI / 800 / 237 / 25,4 / 50,8 / XX)										

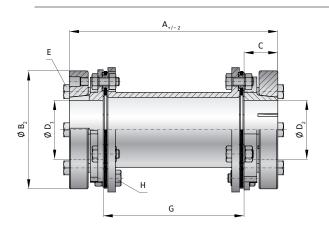
MIT KONUSKLEMMNABE

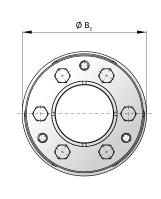
500 - 50.000 Nm

SPEZIELLE EIGENSCHAFTEN

EIGENSCHAFTEN

- ▶ hohe Torsionssteifigkeit
- ▶ andere Längen auf Anfrage
- ▶ spielfrei im Reversierbetrieb


MATERIAL


- ► Lamellenpaket: Hochelastischer Federstahl
- ► Naben und Zwischenstück: Hochfester Stahl

DESIGN

Zwei mit hoher Präzision gefertigte Kupplungsnaben und Zwischenrohraufnahmen, die mittels Buchsen und hochfesten Schrauben mit den Lamellenpaketen verbunden sind.

50.000 Nm auf Anfrage

MODELL LP3 | SERIE 500 - 12000

SERIE			500	800	2500	5000	8000	12000
Nenndrehmoment	(Nm)	T _{KN}	500	800	2500	5000	8000	12000
Max. Drehmoment	(Nm)	T _{Kmax}	1000	1600	5000	10000	16000	24000
Gesamtlänge	(mm)	Α	143	180	265	316	410	440
Außendurchmesser	(mm)	B ₁	116	142	190	231	298	324
Nabendurchmesser	(mm)	B ₂	110	130	165	205	260	290
Passungslänge	(mm)	С	31,5	42	64	78	105	112
Bohrungsdurchmesser * möglich von Ø bis Ø H7	(mm)	D _{1/2}	24-55	30-65	35-80	50-110	60-130	70-170
Befestigungsschrauben (ISC	4017)	Е	6 x M8	6 x M10	6 x M12	6 x M12	6 x M20	6 x M20
Anzugsmoment	(Nm)		35	69	120	295	580	580
infügelänge	(mm)	G	80	96	137	160	200	220
Spannschrauben (ISO 4762) Spannmutter (DIN 934))	Н	M8	M10	M16	M20	M24	M24
Anzugsmoment	(Nm)		41	83	355	690	1200	1200
Frägheitsmoment (10 ⁻³	kgm²)	J _{ges.}	8	22	85	244	881	1393
Material		Ū-	Stahl	Stahl	Stahl	Stahl	Stahl	Stahl
Masse ca.	(kg)		4,6	8,5	20,3	36	81,5	98,2
Torsionssteife (10 ³ Nn	n/rad)	C _T	230	570	900	1900	3100	7000
axial ±	(mm)		1	1,5	2	2,5	2,5	3
ateral ±	(mm)		0,8	1	1,4	1,5	1,6	2,2
angular ± ((Grad)		1	1	1	1	1	1
max. Drehzahl (1,	/min.)		10000	8000	6000	5000	4500	4000

 $^{^{\}star}$ übertragbares Drehmoment abhängig vom Bohrungsdurchmesser (Rücksprache mit Hersteller)

BESTELLBEISPIEL	LP3	500	143	42	38	XX				
Modell	•									
Serie		•				Sonderanfertigungen				
Gesamtlänge mm			•			(z.B. andere Gesamtlänge)				
Bohrungs Ø D1 H7				•		auf Anfrage möglich.				
Bohrungs Ø D2 H7					•					
Bei Sonderanfertigungen bitte bei der Bestellung am Ende der Bestellnummer mit XX kennzeichnen und ausführlich erklären. Z.B. (LP3 / 500 / 143 / 42 / 38 / XX)										

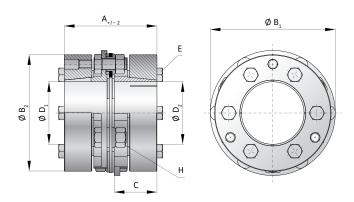
MIT KONUSKLEMMNABE

500 - 50.000 Nm

SPEZIELLE EIGENSCHAFTEN

EIGENSCHAFTEN

- ▶ extrem hohe Torsionssteifigkeit
- ▶ einfachkardanische Bauform
- ▶ spielfrei im Reversierbetrieb


MATERIAL

- ► Lamellenpaket: Hochelastischer Federstahl
- ► Naben und Zwischenstück: Hochfester Stahl

DESIGN

Zwei mit hoher Präzision gefertigte Kupplungsnaben und Zwischenrohraufnahmen, die mittels Buchsen und hochfesten Schrauben mit den Lamellenpaketen verbunden sind.

50.000 Nm auf Anfrage

MODELL LP4 | SERIE 500 - 12000

SERIE			500	800	2500	5000	8000	12000
Nenndrehmoment	(Nm)	T _{KN}	500	800	2500	5000	8000	12000
Max. Drehmoment	(Nm)	T _{Kmax}	1000	1600	5000	10000	16000	24000
Gesamtlänge	(mm)	Α	68	91	137	169	226	241,5
Außendurchmesser	(mm)	B ₁	112	136	172	220	270	305
Nabendurchmesser	(mm)	B ₂	110	130	165	205	260	290
Passungslänge	(mm)	С	31,5	42	64	78	105	112
Bohrungsdurchmesser * möglich von Ø bis Ø H7	(mm)	D _{1/2}	24 - 55	30 - 65	35 - 80	50 - 110	60 - 130	70 - 170
Spannschrauben (ISO 40	17)	Е	6 x M8	6 x M10	6 x M12	6 x M16	6 x M20	6 x M20
Anzugsmoment	(Nm)		25	50	100	250	470	500
Spannschrauben (ISO 40 Spannmutter (DIN 934)	17)	Н	M8	M10	M16	M20	M24	M24
Anzugsmoment	(Nm)		41	83	355	690	1200	1200
Trägheitsmoment (1	0 ⁻³ kgm²)	J _{ges.}	5	15	59	172	606	993
Material			Stahl	Stahl	Stahl	Stahl	Stahl	Stahl
Masse ca.	(kg)		2,9	5,8	14,4	25,4	58	70,6
Torsionssteife (10 ³	Nm/rad)	C _T	500	1250	1700	3800	6400	13800
axial ±	(mm)		0,6	0,8	1,1	1,25	1,25	1,5
angular ±	(Grad)		0,7	0,7	0,7	0,7	0,7	0,7
max. Drehzahl	(1/min.)		10000	8000	6000	5000	4500	4000

^{*} übertragbares Drehmoment abhängig vom Bohrungsdurchmesser (Rücksprache mit Hersteller)

BESTELLBEISPIEL	LP4	500	68	42	38	XX			
Modell	•								
Serie		•				Sondoranfortigungon			
Gesamtlänge mm			•			Sonderanfertigungen (z.B. andere Gesamtlänge)			
Bohrungs Ø D1 H7				•		auf Anfrage möglich.			
Bohrungs Ø D2 H7					•				
Rei Sonderanfertigungen hitte bei der Restellung am Ende der Restellnummer mit XX kennzeichnen und ausführlich erklären. Z.R. (1P4 / 500 / 68 / 42 / 38 / XX)									

VERBINDUNGSPLATTE

500 - 50.000 Nm

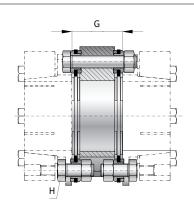
NEU

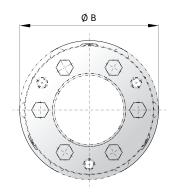
SPEZIELLE EIGENSCHAFTEN

EIGENSCHAFTEN

- ▶ sehr hohe Torsionssteifigkeit
- ▶ doppelkardanische Bauform
- ► kombinierbar mit verschiedenen Nabentypen

MATERIAL


▶ Verbindungsplatte: Hochfester Stahl


DESIGN

Zwei Lamellenpakte die mittels Buchsen und hochfesten Schrauben mit dem Zwischenstück verbunden sind.

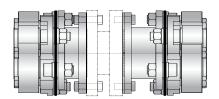
Je nach Anwendung kann das Zwischenstück mit verschiedenen Naben kombiniert werden.

50.000 Nm auf Anfrage

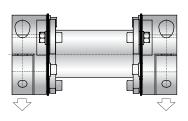
MODELL LPZ | SERIE 500 - 12000

SERIE		500	800	2500	5000	8000	12000
Nenndrehmoment (Nm)	T _{KN}	500	800	2500	5000	8000	12000
Max. Drehmoment (Nm)	T _{Kmax}	1000	1600	5000	10000	16000	24000
Verbindungsplattenlänge (mm)	G	32,8	37,8	62,6	80,6	90	100
Außendurchmesser (mm)	В	112	135	172	220	270	305
Spannschrauben (ISO 4762) Spannmutter (DIN 934)	Н	M8	M10	M16	M20	M24	M24
Anzugsmoment (Nm)		41	83	355	690	1200	1200
Trägheitsmoment (10 ⁻³ kgm²)	J _{ges.}	1	6	28	82	230	398
Material		Stahl	Stahl	Stahl	Stahl	Stahl	Stahl
Masse ca. (kg)		1,2	2,1	6,2	11,3	20,7	27,2
Torsionssteife (10³Nm/rad)	C _T	410	1010	1520	3200	5730	12900
axial ± (mm)		1	1,5	2	2,5	2,5	3
lateral ± (mm)		0,2	0,3	0,4	0,5	0,6	0,7
angular ± (Grad)		1	1	1	1	1	1
max. Drehzahl (1/min.)		10000	8000	6000	5000	4500	4000

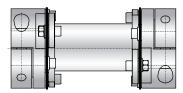
Weitere Serien auf Anfrage.


BESTELLBEISPIEL	LPZ	500	XX							
Modell	•		z.B. kombinierbar mit verschiedenen Nabentypen							
Serie		•	z.b. kombinierbar mit verschiedenen Nabentypen							
Bei Sonderanfertigungen bitte bei der Bestellung am Ende der Bestellnummer mit XX kennzeichnen und ausführlich erklären. Z.B. (LPZ / 500 / XX)										

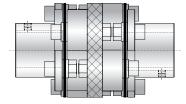
OPTIONEN / SONDERLÖSUNGEN


350 - 24.000 Nm

TORSIONSSTEIFE LAMELLENKUPPLUNGEN - WEITERE AUSFÜHRUNGEN


MIT KONUSKLEMMNABE UND FLANSCHANBAU FÜR DIE ANBINDUNG AN DREHMOMENTMESSFLANSCHE

- ▶ hohe Torsionssteifigkeit
- ▶ hohe Klemmkräfte
- ▶ spielfreie Drehmomentübertragung


MIT GETEILTER KLEMMNABE (HALBSCHALE)

- ▶ einfache radiale Montage & Demontage
- ▶ spielfreie Drehmomentübertragung
- ▶ einfach oder doppelkardanisch

MIT KLEMMNABE

- ▶ montagefreundlich
- ▶ spielfreie Drehmomentübertragung
- ▶ optional mit Passfedernut
- ▶ einfach oder doppelkardanisch

MIT ELEKTRISCHER ISOLIERUNG

- ▶ mit Passfederanbindung, Konusklemmnabe, Klemmnabe, geteilter Klemmnabe oder Flanschanbindung
- ▶ einfach oder doppelkardanisch

FLEXIBLE ZAHNKUPPLUNGEN 1.900 - 2.080.000 Nm

ALLGEMEINE ANGABEN R+W-ZAHNKUPPLUNGEN:

PASSUNGSSPIEL

Welle-Nabeverbindung 0,01 - 0,05 mm

TEMPERATURBEREICH

-30 bis +100° C, höhere Temperaturen auf Anfrage

FLEXIBLE ZAHNKUPPLUNGEN

1.900 - 2.080.000 Nm

MODELLE

EIGENSCHAFTEN

BZ1

mit Passfederverbindung oder zylindrischer Bohrung zum Aufschrumpfen von 1.900 - 2.080.000 Nm

- ▶ hohe Drehmomentübertragung
- ▶ sehr geringes Zahnspiel
- ▶ preiswert
- wartungsarm durch spezielle Verzahnung

BZA

mit Passfederverbindung oder zylindrischer Bohrung zum Aufschrumpfen von 1.900 - 2.080.000 Nm

- ▶ zur Überbrückung großer Achsabstände
- ▶ hohe Drehmomentübertragung
- ▶ sehr geringes Zahnspiel
- ▶ wartungsarm durch spezielle Verzahnung

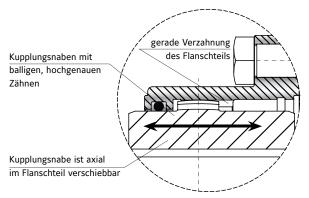
Seite 84 - 85

Seite 82 - 83

Optionen / Sonderlösungen

Seite 86

ΒZ


ALLGEMEINE INFORMATIONEN FLEXIBLE ZAHNKUPPLUNGEN

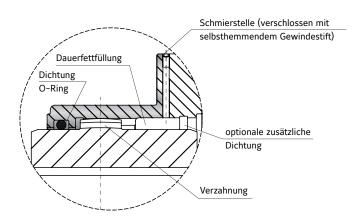
FUNKTION DER FLEXIBLEN ZAHNKUPPLUNG

Der Versatzausgleich der flexiblen Zahnkupplung erfolgt über die hochgenaue Verzahnung von Kupplungsnabe und Flanschteil. Diese übertragen das Drehmoment spielarm und torsionssteif. Die Geometrie der Verzahnung

ermöglicht eine hohe Lebensdauer, auch ohne Versatz. Sie ermöglichen Lateral-, Angular-, sowie Axialversatz auszugleichen.

Axialversatz

Angular- und Lateralversatz


ZULÄSSIGE SCHMIERSTOFFE

▶ Achtung: Die Schmierung der Verzahnung ist für die Lebensdauer der flexiblen Zahnkupplung sehr wichtig. Eine zusätzliche optionale Dichtung sichert die Schmierung über einen langen Zeitraum.

Schmiermittel: Hochleistungsfett

	le Drehzahl anspruchung	Hohe Drehzahl und Beanspruchung				
Castrol	Impervia MDX	Caltex	Coupling Grease			
Esso	Fibrax 370	Klüber	Klüberplex GE 11-680			
Klüber	Klüberplex GE 11-680	Mobil	Mobilgrease XTC			
Mobil	Mobilux EPO	Shell	Albida GC1			
Shell	Alvania grease EP R-O or ER 1	Texaco	Coupling Grease			
Total	Specis EPG					

WARTUNG UND SCHMIERUNG

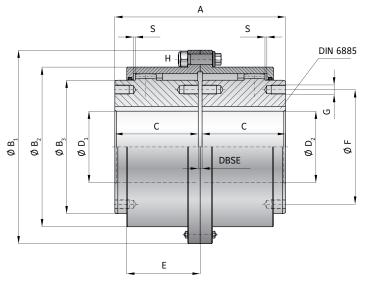
MIT PASSFEDERVERBINDUNG

1.900 - 480.000 Nm

SPEZIELLE EIGENSCHAFTEN

MATERIAL

Kupplung aus hochfestem Stahl


DESIGN

Naben mit Passfederverbindung oder zylindrischer Bohrung zum

Aufschrumpfen.

Optional: Fixierschraube für Passfedernut DIN 916. Ab Serie 450 mit axialen Naben-

gewinden.

MODELL BZ1 | SERIE 10 - 2000

SERIE			10	25	50	100	150	200	300	450	600	800	1500	2000
Nenndrehmoment	(kNm)	T _{KN}	1,9	2,9	5,7	9	14,5	22	34	45	70	85	150	200
Max. Drehmoment	(kNm)	T _{Kmax}	4,2	6,8	14	21,5	35	54	83	110	170	205	360	480
Einbaulänge	(mm)	Α	89	103	127	157	185	216	246	278	308	358	388	450
Außendurchmesser	(mm)	B ₁	111	142	168	200	225	265	300	330	370	406	438	505
Flanschdurchmesser	(mm)	B ₂	82,5	104,6	130,5	158,4	183,4	211,5	245,5	275,5	307	335	367	423
Nabendurchmesser	(mm)	B ₃	68	86	105	132	151	179	209,5	234	255	280	306	356
Passungslänge	(mm)	С	43	50	62	76	90	105	120	135	150	175	190	220
Max. Bohrungsdurchmesser Hi mit 1 / 2 PFN*	7 (mm)	D _{1/2}	48 / 52	62 / 62	72 / 78	90 / 98	105 / 112	122 / 132	144 / 156	160 / 174	175 / 190	192 / 210	210 / 233	245 / 280
Bohrungsdurchmesser möglich von ø bis ø H7 Schrumpfsitz	(mm)	D _{1/2}	12-52	18-62	30-78	32-98	42-112	45-132	50-156	60-174	70-190	90-210	110-233	120-280
Abstand zwischen Wellenende	n (mm)	DBSE	3	3	3	5	5	6	8	8	8	8	8	10
Nabenlänge	(mm)	Е	39	46	59	78,5	92,5	108	123	139	154	179	194	225
Lochkreisdurchmesser	(mm)	ØF	61	73	91	115	132	154	180	204	220	240	268	316
Gewinde		G	M5	М6	M8	M10	M12	M12	M16	M16	M20	M20	M24	M24
Passschraube		н	M8	M10	M10	M12	M12	M16	M16	M16	M18	M22	M22	M24
Anzugsmoment	(Nm)	Н	18	36	36	65	65	150	150	150	220	400	400	520
Trägheitsmoment bei Dmax	(10 ⁻³ kgm²)		3,9	11,6	28,7	70,6	135,3	326,7	605,6	1021	1745,5	2963	4147,2	7982
Gewicht bei Dmax	(Kg)		2,5	4,8	8,4	14,2	21,4	36,0	51,5	71	99	144	165	234,5
max. Drehzahl	(1/min)		6000	4550	4000	3900	3700	3550	3000	2750	2420	2270	1950	1730
Axialversatz	(mm)	S	1,5	1,5	1,5	2,5	2,5	3	4	4	4	4	4	5
Angularversatz	(Grad)		2×0,35	2×0,35	2×0,35	2×0,35	2×0,35	2×0,35	2×0,35	2×0,35	2×0,35	2×0,35	2×0.35	2×0.35

 $[\]star$ Übertragung des Drehmoments bei max. Bohrungsdurchmesser mit 2 Passfedernuten.

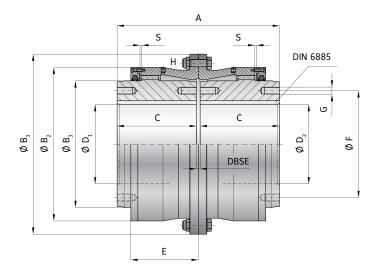
BESTELLBEISPIEL	BZ1	50	60	50	XX					
Modell	•									
Serie		•			Sonderanfertigungen (z.B. VA Material)					
Bohrungs Ø D1 H7			•		auf Anfrage möglich.					
Bohrungs Ø D2 H7				•						
Bei Sonderanfertigungen bitte bei der Bestellung am Ende der Bestellnummer mit XX kennzeichnen und ausführlich erklären. Z.B. (BZ1 / 50 / 60 / 50 / XX)										

BZ1

MIT PASSFEDERVERBINDUNG

290.000 - 2.080.000 Nm

SPEZIELLE EIGENSCHAFTEN


MATERIAL

Kupplung aus hochfestem Stahl

DESIGN

Naben mit Passfederverbindung oder zylindrischer Bohrung zum Aufschrumpfen.

Optional: Fixierschraube für Passfedernut DIN 916

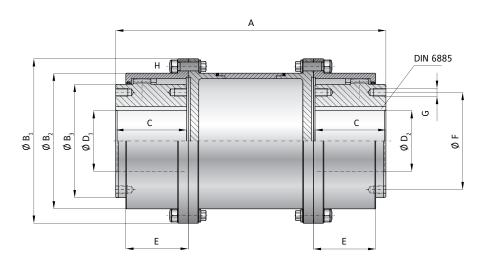
MODELL BZ1 | SERIE 3000 - 10000

SERIE			3000	4000	5000	7000	8000	10000
Nenndrehmoment	(kNm)	T _{KN}	290	402	518	693	882	1040
Max. Drehmoment	(kNm)	T _{Kmax}	580	804	1036	1386	1764	2080
Einbaulänge	(mm)	Α	532	592	652	712	772	820
Außendurchmesser	(mm)	B ₁	590	639	702	769	834	894
Flanschdurchmesser	(mm)	B ₂	503	553	597	657	722	763
Nabendurchmesser	(mm)	B ₃	415	464	490	545	620	660
Passungslänge	(mm)	С	260	290	320	350	380	400
Bohrungsdurchmesser H7	(mm)	D _{1/2}	160-325	180-370	200-400	200-430	230-475	250-510
Bohrungsdurchmesser möglich von ø bis ø H7 Schrumpfsitz	(mm)	D _{1/2}	160-325	180-370	200-400	200-430	230-475	250-510
Abstand zwischen Wellenenden	(mm)	DBSE	12	12	12	12	12	20
Nabenlänge	(mm)	Е	221	245,5	262	280	292	315
Lochkreisdurchmesser	(mm)	ØF	350	400	430	490	560	580
Gewinde		G	M24	M24	M30	M30	M24	M36
Passschraube		Н	M24	M24	M30	M30	M30	M36
Anzugsmoment	(Nm)	П	670	670	1250	1250	1250	2170
Trägheitsmoment bei Dmax (1	0 ⁻³ kgm ²)		18781	28323	44986	71329	113616	150801
Gewicht bei Dmax	(Kg)		406	503	670	904	1201	1403
max. Drehzahl	(1/min)		1100	990	890	785	700	645
Axialversatz	(mm)	S	6	6	6	6	6	10
Angularversatz	(Grad)		2×0,35	2×0,35	2×0,35	2×0,35	2×0,35	2×0,35

BESTELLBEISPIEL	BZ1	5000	210	390	XX				
Modell	•								
Serie		•			Sonderanfertigungen				
Bohrungs Ø D1 H7			•		(z.B. VA Material) auf Anfrage möglich.				
Bohrungs Ø D2 H7				•					
Bei Sonderanfertigungen bitte bei der Bestellung am Ende der Bestellnummer mit XX kennzeichnen und ausführlich erklären. Z.B. (BZ1 / 5000 / 210 / 390 / XX)									

MIT PASSFEDERVERBINDUNG

1.900 - 480.000 Nm


SPEZIELLE EIGENSCHAFTEN

MATERIAL

► Kupplung: Hochfester Stahl

DESIGN

Naben mit Passfederverbindung oder zylindrischer Bohrung zum Aufschrumpfen. Optional: Fixierschraube für Passfedernut DIN 916. Länge des Zwischenstücks nach Kundevorgabe.

MODELL BZA | SERIE 10 - 2000

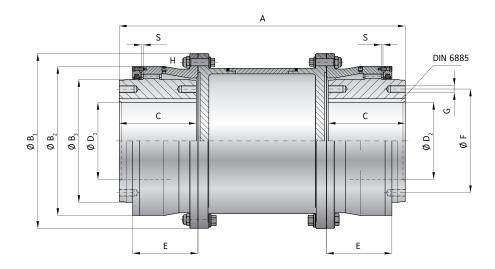
SERIE			10	25	50	100	150	200	300	450	600	800	1500	2000
Nenndrehmoment	(kNm)	T _{KN}	1,9	2,9	5,7	9	14,5	22	34	45	70	85	150	200
Max. Drehmoment	(kNm)	T _{Kmax}	4,2	6,8	14	21,5	35	54	83	110	170	205	360	480
Einbaulänge	(mm)	Α	89	103	127	157	185	216	246	278	308	358	388	450
Außendurchmesser	(mm)	B ₁	111	142	168	200	225	265	300	330	370	406	438	505
Flanschdurchmesser	(mm)	B ₂	82,5	104,6	130,5	158,4	183,4	211,5	245,5	275,5	307	335	367	423
Nabendurchmesser	(mm)	B ₃	68	86	105	132	151	179	209,5	234	255	280	306	356
Passungslänge		С	43	50	62	76	90	105	120	135	150	175	190	220
Max. Bohrungsdurchmesser mit 1 / 2 PFN*	r H7 (mm)	D _{1/2}	48 / 52	62 / 62	72 / 78	90 / 98	105 / 112	122 / 132	144 / 156	160 / 174	175 / 190	192 / 210	210 / 233	245 / 280
Bohrungsdurchmesser mög von-bis H7 Schrumpfsitz	lich (mm)	D _{1/2}	12-52	18-62	30-78	32-98	42-112	45-132	50-156	60-174	70-190	90-210	110-233	120-280
Nabenlänge	(mm)	Е	39	46	59	78,5	92,5	108	123	139	154	179	194	225
Lochkreisdurchmesser	(mm)	F	61	73	91	115	132	154	180	204	220	240	268	316
Gewinde		G	M5	M6	M8	M10	M12	M12	M16	M16	M20	M20	M24	M24
Passschraube			M8	M10	M10	M12	M12	M16	M16	M16	M18	M22	M22	M24
Anzugsmoment	(Nm)	Н	18	36	36	65	65	150	150	150	220	400	400	520
Axialversatz	(mm)	S	1,5	1,5	1,5	2,5	2,5	3	4	4	4	4	4	5
Angularversatz	(Grad)		2×0,35	2×0,35	2×0,35	2×0,35	2×0,35	2×0,35	2×0,35	2×0,35	2×0,35	2×0,35	2× 0,35	2× 0,35

^{*} Übertragung des Drehmoments bei max. Bohrungsdurchmesser mit 2 Passfedernuten.

BESTELLBEISPIEL	BZA	50	1200	60	50	XX				
Modell	•									
Serie		•				Sonderanfertigungen				
Gesamtlänge mm			•			(z.B. VA Material)				
Bohrungs Ø D1 H7				•		auf Anfrage möglich.				
Bohrungs Ø D2 H7					•					
Bei Sonderanfertigungen bitte bei der Bestellung am Ende der Bestellnummer mit XX kennzeichnen und ausführlich erklären. Z.B. (BZA / 50 / 1200 / 60 / 50 / XX)										

MIT PASSFEDERVERBINDUNG

290.000 - 2.080.000 Nm


SPEZIELLE EIGENSCHAFTEN

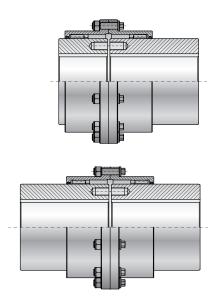
MATERIAL

► Kupplung: Hochfester Stahl

DESIGN

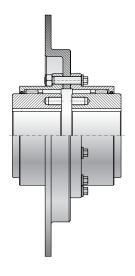
Naben mit Passfederverbindung oder zylindrischer Bohrung zum Aufschrumpfen. Optional: Fixierschraube für Passfedernut DIN 916. Länge des Zwischenstücks nach Kundevorgabe.

MODELL BZA | SERIE 3000 - 10000

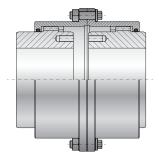

SERIE			3000	4000	5000	7000	8000	10000
Nenndrehmoment	(kNm)	T _{KN}	290	402	518	693	882	1040
Max. Drehmoment	(kNm)	T _{Kmax}	580	804	1036	1386	1764	2080
Einbaulänge	(mm)	Α	532	592	652	712	772	820
Außendurchmesser	(mm)	B ₁	590	639	702	769	834	894
Flanschdurchmesser	(mm)	B ₂	503	553	597	657	722	763
Nabendurchmesser	(mm)	B ₃	415	464	490	545	620	660
Passungslänge	(mm)	С	260	290	320	350	380	400
Bohrungsdurchmesser H7	(mm)	D _{1/2}	160-325	180-370	200-400	200-430	230-475	250-510
Bohrungsdurchmesser (H7) Schrumpfsitz	(mm)	D _{1/2}	160-325	180-370	200-400	200-430	230-475	250-510
Nabenlänge	(mm)	Е	221	245,5	262	280	292	315
Lochkreisdurchmesser	(mm)	F	350	400	430	490	560	580
Gewinde		G	M24	M24	M30	M30	M24	M36
Passschraube			M24	M24	M30	M30	M30	M36
Anzugsmoment	(Nm)	Н	670	670	1250	1250	1250	2170
Axialversatz	(mm)	S	6	6	6	6	6	10
Angularversatz	(Grad)		2×0,35	2×0,35	2×0,35	2×0,35	2×0,35	2×0,35

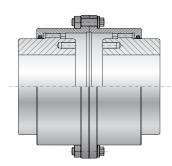
BESTELLBEISPIEL	BZA	3000	1200	160	280	XX
Modell	•					
Serie		•				Sonderanfertigungen
Gesamtlänge mm			•			(z.B. VA Material)
Bohrungs Ø D1 H7				•		auf Anfrage möglich.
Bohrungs Ø D2 H7					•	

OPTIONEN / SONDERLÖSUNGEN

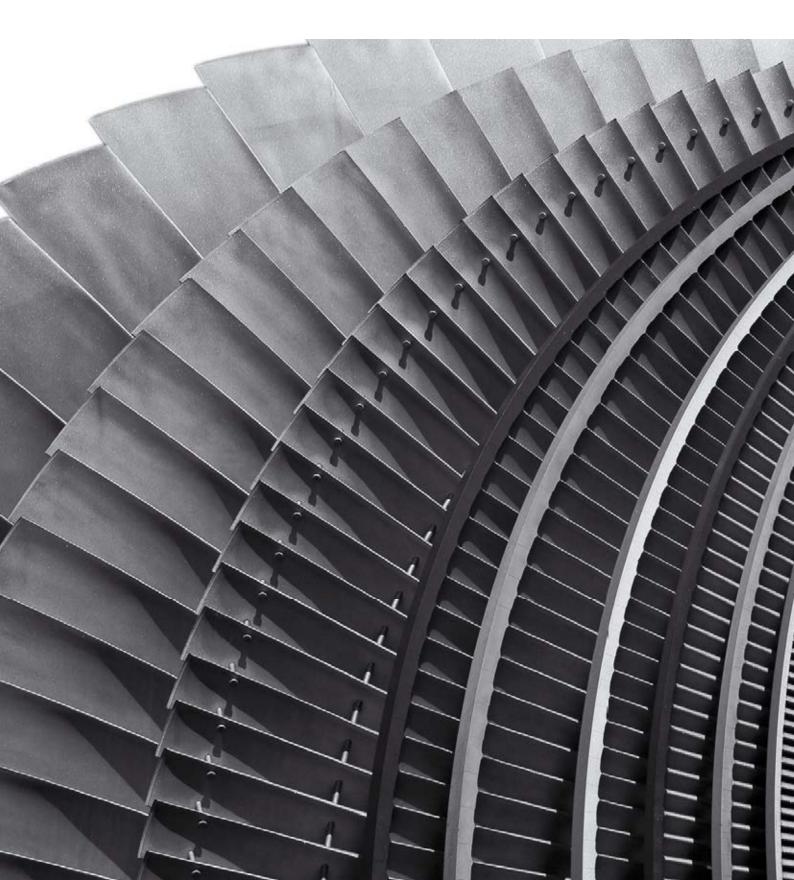

1.900 - 2.080.000 Nm

FLEXIBLE ZAHNKUPPLUNGEN - WEITERE AUSFÜRHUNGEN


MIT EINER/ZWEI VERLÄNGERTEN NABEN


- ▶ Nabenlänge individuell anpassbar
- ► einfacher Austausch von vorhandenen Zahnkupplungen
- ▶ optimale Ausnutzung des Bauraums

MIT BREMSSCHEIBE


- ▶ zum Abremsen der Applikation
- ▶ zum Fixieren der Applikation
- ▶ als Notstopp-Funktion

MIT EINER/ZWEI GEDREHTEN NABEN

- zur einfachen Erhöhung des Abstandes zwischen den Wellenenden
- ▶ optimierte Momentenübertragung
- ▶ höhere Lebensdauer

SPIELFREIE, TORSIONSSTEIFE METALLBALGKUPPLUNGEN 10.000-100.000 Nm

ALLGEMEINE ANGABEN R+W-METALLBALGKUPPLUNGEN:

LEBENSDAUER

Bei Beachtung der technischen Hinweise sind die Kupplungen lebensdauerfest und wartungsfrei

PASSUNGSSPIEL

Welle-Nabeverbindung 0,03 - 0,08 mm

TEMPERATURBEREICH

-40 bis +300° C

SONDERLÖSUNGEN

Wie andere Passungen, Sondermaterial sind kurzfristig möglich

ATEX (Optional)

Für den Einsatz in Explosionsschutzbereichen. Auf Anfrage kurzfristig möglich.

TORSIONSSTEIFE METALLBALGKUPPLUNGEN

10.000 -100.000 Nm

MODELLE

EIGENSCHAFTEN

BX1

mit Flanschanbindung von 10.000 - 100.000 Nm

► für kundenspezifische Sonderlösungen Seite 91

BX4

mit Passfederverbindung von 10.000 - 100.000 Nm

- ▶ spielarme Passfederverbindung
- ▶ kompakte, einfache Bauweise

Seite 92

BX6

mit Konusklemmnabe von 10.000 - 100.000 Nm

- ▶ spielfreie Konusklemmverbindung
- ▶ hohe Klemmkräfte

Seite 93

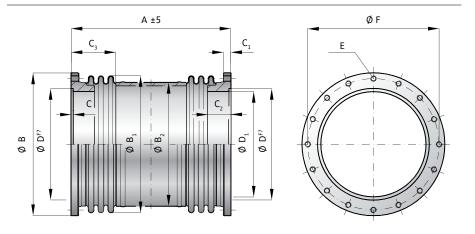
BX1

MIT FLANSCHANBINDUNG

10.000 - 100.000 Nm

SPEZIELLE EIGENSCHAFTEN

EIGENSCHAFTEN


- ▶ kompakte, einfache Bauweise
- ▶ hohe Versatzwerte
- ▶ integrierte Abstützung (bis auf Serie 10)

MATERIAL

- ▶ Naben: Stahl
- ▶ Balg: Aus hochelastischem Edelstahl

DESIGN

Beidseitig mit Flanschnaben Metallbalg mit Zwischenstück (auf Wunsch längenvariabel) (Serie 10 ohne Zwischenstück) Balg-Nabenverbindungen geschweißt

MODELL BX1 | SERIE 10 - 100

SERIE		10	25	50	75	100
Nenndrehmoment (KNm	T _{KN}	10	25	50	75	100
max. Drehmoment (KNm	T _{Kmax}	15	38	75	113	150
Kupplungslänge (mm	A ±5	125	380	450	580	640
Außendurchmesser Flansch (mm	В	310	336	398	449	545
Außendurchmesser Balg ±2 (mm	B ₁	300	323	370	412w	520
Außendurchmesser Rohr (mm	B ₂	-	273	324	360	460
Passungslänge +0,5 (mm	C +0,5	4	5	6	10	15
Gewindelänge (mm	C ₁	15	25	30	36	36
Nabenlänge (mm	C ₂	24	81	80	103	120
Balgkörperlänge +3 (mm	C ₃	-	121	133	165	165
Zentrierdurchmesser F 7 (mm	D	265	260	310	350	440
Nabendurchmesser +0,3 (mm	D ₁	250	240	285	317	390
Befestigungsgewinde*		20x M12	24x M16	24x M20	20x M24	24x M24
Anzugsmoment Befestigungsschrauber (Schraubenqualität 10.9) (Nm		120	300	580	1000	1000
Lochkreisdurchmesser ±0,4 (mm	F	290	304	361	404	500
Trägheitsmoment (10 ⁻³ kgm²	J _{ges.}	101	548	1185	2725	7900
Masse ca. (kg		8,3	27,8	43,7	80	151
axial ± (mm		3	5	6	7	8
lateral ± (mm	max. Werte	0,4	2,2	2,5	3	3,5
angular ± (Grad		1,5	1	1	1	1
Torsionssteife Kupplung (10³ Nm/rad		20.000	9.000	15.500	23.000	35.000
axiale Federsteifigkeit Balg (N/mm		985	3000	4300	3900	2800
laterale Federsteifigkeit Balg (KN/mm		21	133	207	175	219

^{*} Bohrbild Nabe 1 zu 2 nicht fluchtend

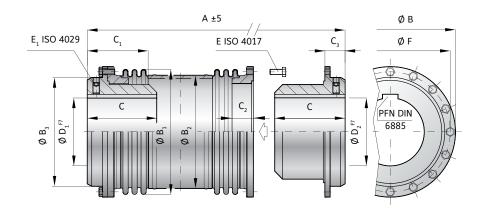
BESTELLBEISPIEL	BX1	50	XX						
Modell	•		Sonderanfertigungen (z.B. Naben rostfrei)						
Serie/Nenndrehmoment (KNm)		•	auf Anfrage möglich.						
Bei Sonderanfertigungen bitte bei der Bestellung am Ende der Bestellnummer mit XX kennzeichnen und ausführlich erklären. Z.B. (BX1 / 50 / XX)									

MIT PASSFEDERVERBINDUNG

10.000 - 100.000 Nm

SPEZIELLE EIGENSCHAFTEN

EIGENSCHAFTEN


- ▶ kompakte, einfache Bauweise
- ▶ hohe Versatzwerte
- ▶ integrierte Abstützung (bis auf Serie 10)

MATERIAL

- ▶ Naben: Stahl
- ▶ Balg: Aus hochelastischem Edelstahl

DESIGN

Beidseitig mit abnehmbaren Kupplungsnaben inkl. Passfedernut Metallbalg mit Zwischenstück (auf Wunsch längenvariabel) (Serie 10 ohne Zwischenstück) Balgnabenverbindung geschweißt

MODELL BX4 | SERIE 10 - 100

SERIE			10	25	50	75	100
Nenndrehmoment	(KNm)	T _{KN}	10	25	50	75	100
max. Drehmoment	(KNm)	T _{Kmax}	15	38	75	113	150
Kupplungslänge	(mm)	A _{±5}	210	480	590	760	840
Außendurchmesser Flansch	(mm)	В	310	336	398	449	545
Außendurchmesser Balg ±2	(mm)	B ₁	300	323	370	412	520
Außendurchmesser Rohr	(mm)	B ₂	-	273	324	360	460
Durchmesser Nabe	(mm)	B ₃	255	260	310	350	440
Passungslänge Nabe	(mm)	С	95	130	200	240	280
Länge ±3	(mm)	C ₁	-	170	200	257	260
Nabenlänge	(mm)	C ₂	24	81	80	103	120
Länge	(mm)	C ₃	42	49	70	90	100
Bohrungsdurchmesser von - bis F7	(mm)	D ₁ /D ₂	50 - 170	60 - 170	80 - 200	100 - 230	120 - 280
Befestigungsschrauben / Anzugsmoment ISO 4017	(Nm)	Е	20xM12 / 120	24xM16 / 300	24xM20 / 580	20xM24 / 1000	24xM24 / 1000
Befestigungsschrauben / Anzugsmoment ISO 4029	(Nm)	E ₁	M12 / 100	M16 / 220	M20 / 450	M24 / 800	M24 / 800
Lochkreisdurchmesser ±0,4	(mm)	F	290	304	361	404	500
Trägheitsmoment	(10 ⁻³ kgm ²)	J _{ges.}	492	1272	3270	6754	19350
Masse ca.	(kg)		44,7	85	164	260	477
axial	± (mm)		3	5	6	7	8
lateral	± (mm)	max. Werte	0,4	2,2	2,5	3	3,5
angular	± (Grad)		1,5	1	1	1	1
Torsionssteife Kupplung (2	103 Nm/rad)		20.000	9.000	15.500	23.000	35.000

MAX. ÜBERTRAGBARERE DREHMOMENTE DER PASSFEDERVERBINDUNG

Angaben in KNm. Die Werte sind nur für Verbindungen nach DIN 6885 gültig (mit 100% Passfederauflage)

Serie	Ø 60	Ø 80	Ø 100	Ø 120	Ø140	Ø 160	Ø 170	Ø 180	Ø 200	Ø 220	Ø 230	Ø 240	Ø 260	Ø 280
10	х	х	х	х	х	х	х	х	х	х	х	x	х	х
25	7	12	18	26	34	44	46	х	х	х	х	x	х	х
50	х	19	28	40	52	67	71	84	94	x	x	x	х	x
75	х	x	34	47	62	81	85	101	112	136	142	x	х	x
100	х	х	х	55	74	94	100	118	131	159	166	189	205	220

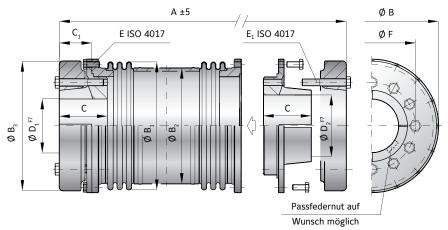
BX6

MIT ABNEHMBAREN KONUSKLEMMNABEN

10.000 - 100.000 Nm

SPEZIELLE EIGENSCHAFTEN

EIGENSCHAFTEN


- ▶ kompakte, einfache Bauweise
- ▶ hohe Versatzwerte
- ▶ integrierte Abstützung (bis auf Serie 10)

MATERIAL

- ▶ Naben: Stahl
- ▶ Balg: Aus hochelastischem Edelstahl

DESIGN

Beidseitig mit abnehmbaren Kupplungsnaben inkl. Passfedernut Metallbalg mit Zwischenstück (auf Wunsch längenvariabel) (Serie 10 ohne Zwischenstück) Balgnabenverbindung geschweißt

MODELL BX6 | SERIE 10 - 100

SERIE			10	25	50	75	100
Nenndrehmoment	(KNm)	T _{KN}	10	25	50	75	100
max. Drehmoment	(KNm)	T _{Kmax}	15	38	75	113	150
Kupplungslänge	(mm)	A ±5	235	530	650	840	940
Außendurchmesser Flansch	(mm)	В	310	336	398	449	545
Außendurchmesser Balg ±2	(mm)	B ₁	300	323	370	412	520
Außendurchmesser Rohr	(mm)	B ₂	-	273	324	360	460
Durchmesser Klemmkonus	(mm)	B ₃	300	310	380	420	530
Passungslänge Klemmnabe	(mm)	С	90	110	140	170	200
Länge	(mm)	C ₁	55	74	99	130	150
Bohrungsdurchmesser von - bis F7	(mm)	D ₁ /D ₂	70 - 170	80 - 170	100 - 200	130 - 230	150 - 280
Befestigungsschrauben ISO 40: Flanschanbindung	17 (mm)	Е	20 x M12	24 x M16	24 x M20	20 x M24	24 x M24
Anzugsmoment	(Nm)		120	300	580	1000	1000
Befestigungsschrauben ISO 40: Konusklemmelement	17 (mm)	E,	8 x M16	12 x M16	12 x M20	16 x M20	12 x M24
Anzugsmoment	(Nm)		200	250	300	350	600
Lochkreisdurchmesser ±0,4	(mm)	F	210	220	250	290	360
Trägheitsmoment (10)-3 kgm²)	J _{ges.}	828	1535	3799	8277	24876
Masse ca.	(kg)		60	93	168	280	550
axial ±	t (mm)		3	5	6	7	8
lateral ±	t (mm)	max. Werte	0,4	2,2	2,5	3	3,5
angular	± (Grad)		1,5	1	1	1	1
Torsionssteife Kupplung (10 ³	Nm/rad)		20.000	9.000	15.500	23.000	35.000

BESTELLBEISPIEL	BX4 BX6	50	120	200	XX				
Modell	•								
Serie/Nenndrehmoment (KNm)		•			Sonderanfertigungen (z.B. Naben rostfrei)				
Bohrungs Ø D1 F7			•		auf Anfrage möglich.				
Bohrungs Ø D2 F7				•					
Bei Sonderanfertigungen bitte bei der Bestellung am Ende der Bestellnummer mit XX kennzeichnen und ausführlich erklären. Z.B. (BX4 / 50 / 120 / 200 / XX)									

SPIELFREIE SERVOMAX® ELASTOMERKUPPLUNGEN 1.950 – 25.000 Nm

ALLGEMEINE ANGABEN R+W-ELASTOMERKUPPLUNGEN:

LEBENSDAUER

Bei Beachtung der technischen Hinweise sind die Kupplungen lebensdauerfest und wartungsfrei

ATEX (Optional)

Für den Einsatz in Explosionsschutzbereichen. Auf Anfrage kurzfristig möglich.

SONDERLÖSUNGEN

Wie andere Passungen, Passfedernuten, Sondermaterial, und ATEX-Ausführungen sind kurzfristig möglich.

PASSUNGSSPIEL

Welle-Nabeverbindung 0,01 - 0,05 mm

SPIELFREIE SERVOMAX® ELASTOMERKUPPLUNGEN

1.950 - 25.000 Nm

MODELLE

EIGENSCHAFTEN

EK1

mit Passfederverbindung von 1.950 - 25.000 Nm

- ▶ preiswerte Ausführung
- modifizierbar für kundenspezifische Anwendungen

EKH

mit geteilter Klemmnabe von 1.950 - 25.000 Nm

- ▶ montagefreundlich
- ▶ radial montierbar
- ▶ kurze Montage & Demontage

EK6

mit Konusklemmring von 1.950 - 25.000 Nm

- ▶ sehr gute Rundlaufgenauigkeit
- ▶ hohe Klemmkräfte
- axial montierbar
- durch axiale Montage keine zusätzlichen Bohrungen notwendig

EZ2

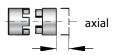
mit geteilter Klemmnabe von 1.950 - 25.000 Nm

- ▶ Standardlängen bis 4 m
- ▶ keine Zwischenlagerung notwendig
- Gelenkwelle radial herausnehmbar, dadurch einfache Montage & Demontage

Seite 98

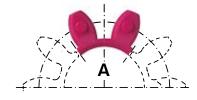
Seite 99

Seite 100

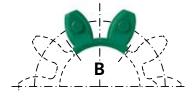

Seite 101

ALLGEMEINE INFORMATIONEN R+W ELASTOMERKUPPLUNGEN

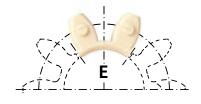
ACHSVERSÄTZE


FUNKTION

Das Ausgleichselement der Elastomerkupplung ist der Elastomerkranz. Dieser überträgt das Drehmoment spielfrei und schwingungsdämpfend. Der Elastomerkranz bestimmt maßgebend die Eigenschaften der gesamten Kupplung bzw. des gesamten Antriebsstranges.


Die Spielfreiheit der Kupplung ist durch die Druckvorspannung des Elastomerkranzes gewährleistet. Mit der Servomax-Kupplung kann der gesamte Antriebsstrang, durch unterschiedliche Shorehärten des Zahnkranzes, drehschwingungsmäßig optimiert werden.

SERIE 2500 - 9500


ELASTOMERKRANZ BESTEHT AUS 5X ELASTOMERSEGMENTEN

Shorehärte 98 Sh A

Shorehärte 64 Sh D

Shorehärte 64 Sh D

BESCHREIBUNG DER ELASTOMERKRÄNZE

Ausführung	Shorehärte	Farbe	Werkstoff	verhältnismäßige Dämpfung (Ψ)	Temperaturbereich	Eigenschaften
А	98 Sh A	rot	TPU	0,4 - 0,5	-30°C bis +100°C	gute Dämpfung
В	64 Sh D	grün	TPU	0,3 - 0,45	-30°C bis +120°C	hohe Torsionssteife
E	64 Sh D	beige	Hytrel	0,3 - 0,45	-50°C bis +150°C	temperaturbeständig

Die Werte der verhältnismäßigen Dämpfung wurden bei 10 Hz und +20° C ermittelt.

MODELLREIHE EK

SERIE			2500		45	00	9500		
Ausführung Elastomerkranz			А	В	А	В	А	В	
Statische Torsionssteife	(Nm/rad)	C _T	87600	109000	167000	372000	590000	670000	
Dynamische Torsionssteife	(Nm/rad)	C _{Tdyn}	175000	216000	337000	743000	1180000	1340000	
lateral	(mm)		0,5	0,3	0,5	0,3	0,6	0,4	
angular	(Grad)	Max. Werte	1,5	1	1,5	1	1,5	1	
axial	(mm)		±	3	<u>+</u>	4	±5		

Statische Torsionssteife bei 50% T_{KN}

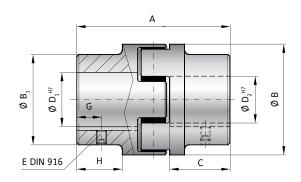
Dynamische Torsionssteife bei T_{KN}

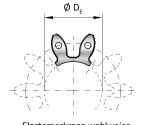
MIT PASSFEDERVERBINDUNG

1.950 - 25.000 Nm

SPEZIELLE EIGENSCHAFTEN

EIGENSCHAFTEN


- ▶ preiswert
- ▶ gute Rundlaufgenauigkeit
- ▶ spielarm, da Passfederverbindung


MATERIAL

- ▶ Naben: GGG40
- ► Elastomerkranz: Verschleißfestes Hochleistungs TPU

DESIGN

Zwei Kupplungsnaben (hohe Rundlaufgenauigkeit) mit konkaven Klauen und je einer Stellschraube. Elastomerkranz besteht aus fünf einzelnen Segmenten. Aufgrund Elastomerkranz – steckbar, spielfrei und elektrisch isolierend.

Elastomerkranz wahlweise Ausführung A / B

MODELL EK1 | SERIE 2500 - 9500

SERIE		25	00	45	00	95	00	
Ausführung (Elastomerkranz)		А	В	Α	В	А	В	
Nenndrehmoment (Nm)	T _{KN}	1950	2450	5000	6200	10000	12500	
Max. Drehmoment (Nm)	T _{Kmax}	3900	4900	10000	12400	20000	25000	
Einbaulänge (mm)	Α	21	3	27	72	34	1	
Außendurchmesser (mm)	B/B ₁	160 /	154	225	/ 190	290 /	240	
Passungslänge (mm)	С	8	3	11	13	14	2	
Bohrungsdurchmesser vorgebohrt (mm)	D _v	3)	4	0	50		
Bohrungsdurchmesser möglich von Ø bis Ø H7 (mm)	D _{1/2}	30 -	95	40 -	130	50 - 170		
Max. Innendurchmesser (Elastomerkranz) (mm)	D _E	8	0	11	11	145		
Klemmschrauben (DIN 916)	Е		sie	he Tabelle (abhängig vor	gig vom Bohrungsdurchmesser)**			
Abstand (mm)	G	2	5	3	0	40		
Mögliches Kürzungsmaß (mm)	Н	6	9	8	9	110		
Trägheitsmoment pro Nabe (10 ⁻³ kgm²)	J ₁ /J ₂	4)	14	47	480		
Masse ca. (kg)		12	,5	2	5	53	3	
Standarddrehzahl (min ⁻¹)		3.5	00	3.0	000	2.000		
*Drehzahl gewuchtet max. (10³min⁻¹)		10	10	8	8	6,5	6,5	

Informationen über stat. und dyn. Torsionssteife sowie max. mögliche Wellenverlagerung siehe Seite 97.

** Klemmschrauben							
Ø 12,1 - 30	M5						
Ø 30,1 - 58	M8						
Ø 58,1 - 95	M10						
Ø 95,1 - 130	M12						
Ø 130,1 - 170	M16						

BESTELLBEISPIEL	EK1	2500	Α	50	80	XX
Modell	•					
Serie		•				Sonderanfertigungen
Ausführung Elastomerkranz			•			(z.B. Edelstahl)
Bohrungs Ø D1 H7				•		auf Anfrage möglich.
Bohrungs Ø D2 H7					•	

MIT GETEILTER KLEMMNABE

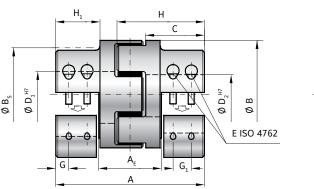
1.950 - 25.000 Nm

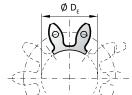
SPEZIELLE EIGENSCHAFTEN

EIGENSCHAFTEN

- ► radial montierbar
- ▶ kurze Montage- & Demontagezeiten
- ▶ gute Rundlaufgenauigkeit

MATERIAL


- ▶ Naben: GGG40
- ▶ Elastomerkranz: Verschleißfestes


Hochleistungs TPU

DESIGN

Zwei geteilte Klemmnaben (hohe Rundlaufgenauigkeit) mit konkaven Klauen und je vier seitlichen Schrauben. Klemmnabenhälften in eine Richtung radial abnehmbar. Elastomerkranz besteht aus fünf einzelnen Segmenten. Aufgrund des Elastomerkranzes – steckbar, spielfrei und elektrisch isolierend.

BESTELLBEISPIEL Siehe Seite 67

Elastomerkranz wahlweise Ausführung A / B

MODELL EKH | SERIE 2500 - 9500

SERIE			25	00	45	00	95	00	
Ausführung (Elastomerkranz)			Α	В	А	В	А	В	
Nenndrehmoment	(Nm)	T _{KN}	1950	1950 2450		6200	10000	12500	
Max. Drehmoment**	(Nm)	T _{Kmax}	3900	4900	10000	12400	20000	25000	
Einbaulänge	(mm)	Α	21	.3	27	72	34	1	
Einfügelänge	(mm)	A _E	7	8	10	04	13	1	
Außendurchmesser	(mm)	В	16	60	22	225		0	
Außendurchmesser Schraubenkopf	(mm)	B _s	156		199		243		
Passungslänge	(mm)	С	85		11	13	140		
Bohrungsdurchmesser möglich von Ø bis Ø H7	(mm)	D _{1/2}	35 - 90		40 -	120	50 -	140	
Max. Innendurchmesser (Elastomerkranz)	(mm)	D _E	8	0	111		145		
Befestigungsschrauben (ISO 476	52)	E	1 × 8	M16	8 × M20		8 × M24		
Anzugsmoment	(Nm)	E	30	00	600		1100		
Mittenabstand	(mm)	F	5	7	7	75		90	
Abstand	(mm)	G/G ₁	3	6	24 /	/ 41	30 / 48		
Nabenlänge	(mm)	H/H ₁	120	/ 69	154	/ 89	193 /	110	
Trägheitsmoment pro Nabe (10-	³ kgm²)	J ₁ /J ₂	4	0	14	47	48	0	
Masse ca.	(kg)		12	,5	2	5	53		
Standarddrehzahl	(min ⁻¹)		3.0	00	3.5	3.500		2.000	
*Drehzahl gewuchtet max. (10)3min-1)		10	10	8	8	6,5	6,5	

Informationen über stat. und dyn. Torsionssteife sowie max. mögliche Wellenverlagerung siehe Seite 97.

 $[\]hbox{ ** Maximal \"{u}bertragbares Drehmoment der Klemmnabe (Nm) in Abh\"{a}ngigkeit des Bohrungsdurchmessers } \\$

Serie	Ø 35	Ø 45	Ø 50	Ø 55	Ø 60	Ø 65	Ø 70	Ø 75	Ø 80	Ø 90	Ø 120	Ø 140
2500	1400	1800	2000	2250	2500	2700	2900	3100	3300	3700		
4500		2400	2600	2900	3100	3400	3600	3900	4100	4700	6200	
9500			5000	5500	6000	6500	7000	7500	8000	9000	12000	14000

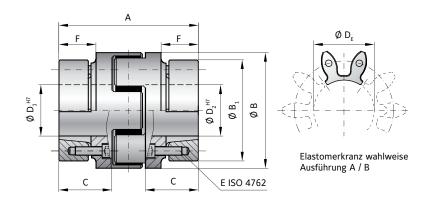
Höhere Drehmomente durch zusätzliche Passfeder möglich!

MIT KONUSKLEMMRING

1.950 - 25.000 Nm

SPEZIELLE EIGENSCHAFTEN

EIGENSCHAFTEN


- ▶ hohe Klemmkräfte
- ▶ sehr hohe Rundlaufgenauigkeit
- ▶ axial montierbar

MATERIAL

- ▶ Naben und Konusklemmring: GGG40
- ► Elastomerkranz: Verschleißfestes Hochleistungs TPU

DESIGN

Zwei Kupplungsnaben (hohe Rundlaufgenauigkeit) mit konkaven Klauen inklusive Schrauben (Anzahl serienabhängig) und Abdrückgewinden. Elastomerkranz besteht aus fünf einzelnen Segmenten. Aufgrund des Elastomerkranzes – steckbar, spielfrei und elektrisch isolierend.

MODELL EK6 | SERIE 2500 - 9500

SERIE		25	00	45	00	95	00	
Ausführung (Elastomerkranz)		А	В	Α	В	А	В	
Nenndrehmoment (Nm)	T _{KN}	1950	1950 2450		6200	10000	12500	
Max. Drehmoment (Nm)	T _{Kmax}	3900	3900 4900		12400	20000	25000	
Einbaulänge (mm)	Α	17	77	22	27	28	32	
Außendurchmesser (mm)	B/B ₁	160 /	159	225	/ 208	28	35	
Passungslänge (mm)	С	7	0	90		112		
Innendurchmesser möglich von Ø bis Ø H7 (mm)	D _{1/2}	40 -	- 95	50 - 130		60 - 170		
Max. Innendurchmesser (Elastomerkranz) (mm)	D _E	8	0	111		145		
Befestigungsschrauben (ISO 4762)	_	10x M10		10x M12		10x M16		
Anzugsmoment (Nm)	Е	6	0	100		160		
Abstand (mm)	F	5	1	6	6	80		
Trägheitsmoment pro Nabe (10 ⁻³ kgm²)	J ₁ /J ₂	31	,7	13	5,7	46	9,2	
Masse ca. (kg)		1	15		5	7	3	
Standarddrehzahl (min ⁻¹)		3.5	3.500		3.000		2.000	
*Drehzahl gewuchtet max. (10³min-1)		10	10	8	8	6,5	6,5	

Informationen über stat. und dyn. Torsionssteife sowie max. mögliche Wellenverlagerung siehe Seite 97.

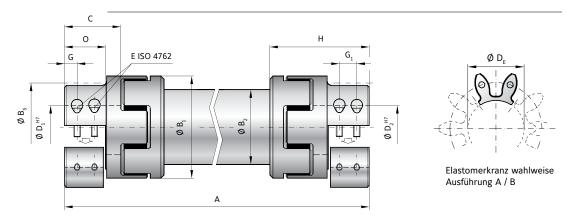
BESTELLBEISPIEL	EKH / EK6	2500	Α	50	80	XX		
Modell	•							
Serie		•				Sonderanfertigungen		
Ausführung Elastomerkranz			•			(z.B. Edelstahl)		
Bohrungs Ø D1 H7				•		auf Anfrage möglich.		
Bohrungs Ø D2 H7					•			
Bei Sonderanfertigungen bitte bei der Bestellung am Ende der Bestellnummer mit XX kennzeichnen und ausführlich erklären. Z.B. (EK6 / 2500 / A / 50 / 80 / XX)								

EZ2

MIT GETEILTER KLEMMNABE

1.950 - 25.000 Nm

EIGENSCHAFTEN


- ▶ kurze Montage & Demontage
- ▶ zur Überbrückung großer Achsabstände bis 4 m
- ▶ keine Zwischenlagerung notwendig

MATERIAL

- ▶ Naben: GGG40
- ► **Zwischenrohr:** Stahl, optional CFK-Rohr möglich
- ► Elastomerkranz: Verschleißfestes Hochleistungs TPU

DESIGN

Zwei geteilte Klemmnaben mit konkaven Klauen und je vier seitlichen Schrauben. Beide Kupplungskörper sind fest verbunden mit einem auf hohem Rundlauf optimierten Zwischenrohr. Elastomerkranz besteht aus fünf einzelnen Segmenten. Aufgrund des Elastomerkranzes – steckbar, spielfrei und elektrisch isolierend.

MODELL EZ2 | SERIE 2500 - 9500

SERIE			25(00	45	00	950	00	
Ausführung (Elastomerkranz)			Α	В	А	В	А	В	
Nenndrehmoment	(Nm)	T _{KN}	1.950	2.450	5.000	6.200	10.000	12.500	
Max. Drehmoment*	(Nm)	T _{Kmax}	3.900	4.900	10.000	12.400	20.000	25.000	
Einbaulänge der Gelenkwelle von - b	ois (mm)	Α	460 - 4	460 - 4000		4.000	710 - 4.000		
Außendurchmesser Nabe	(mm)	B ₁	16	0	22	25	290)	
Außendurchmesser Rohr	(mm)	B ₂	15	0	17	75	220)	
Außendurchmesser Schraubenkopf	(mm)	B _s	15	5	19	199		3	
Passungslänge	(mm)	С	88	88		110		140	
Bohrungsdurchmesser möglich von Ø bis Ø H7	(mm)	D _{1/2}	35 - 90		40 -	40 - 120		50 - 140	
Max. Innendurchmesser (Elastomerkranz) (mi	m)	D _E	80		1:	111		145	
Befestigungsschrauben (ISO 4762)		Е	4 x N	4 x M16		M20	8 x N	124	
Anzugsmoment	(Nm)		30	0	600		980		
Mittenabstand	(mm)	F	57	•	75		90		
Abstand	(mm)	G/G ₁	18 /	30	24	/ 41	30 /	48	
Kupplungslänge	(mm)	Н	143	2	18	31	229	9	
Trägheitsmoment je Kupplungsteil (1	10 ⁻³ kgm²)	J_1/J_2	30)	14	40	450)	
Trägheitsmoment Rohr je laufender Meter (1	10 ⁻³ kgm²)	J ₃	36	0	7!	50	1.80	00	
Torsionssteife beider Elastomerkränze	(Nm/rad)	C _{Tdyn} E	87.500	108.000	168.500	371.500	590.000	670.000	
Torsionssteife pro 1 m Zwischenrohr	(Nm/rad)	C_T^{ZWR}	950.0	000	2.200	0.200	5.500.	000	
Gelenkmittenmaß	(mm)	N	10	8	13	37	171		
Länge	(mm)	0	67	•	8	5	10!	5	

^{*} Maximal übertragbares Drehmoment der Klemmnabe (Nm) in Abhängigkeit des Bohrungsdurchmessers siehe Seite 99.

	<u> </u>							
BESTELLBEISPIEL	EZ2	2500	1200	Α	50	80	XX	
Modell	•							
Serie		•					Sonderanfertigungen (z.B. feingewuchtet) auf Anfrage möglich.	
Gesamtlänge mm			•					
Ausführung des Elastomerkranzes				•				
Bohrungs Ø D1 H7					•			
Bohrungs Ø D2 H7						•		
Poi Sondoranfortigungon hitto hoi d	20 Sonderanfortiguages hitto bei der Bertellung am Ende der Bertellungmay mit VV konsteichen und ausführlich erklären 7 B (E77 / 250/ 1200 / A / 50 / 90 / VV)							

FÜR DEN EINSATZ IN EXPLOSIONSGEFÄHRDETEN BEREICHEN

MODELLREIHEI **ATEX**

BEISPIELKENNZEICHNUNG

Anhand der ATEX-Kennzeichnung von Geräten und Komponenten kann deren Eignung für bestimmte Einsatzbedingungen geprüft werden.

C	II	2G	С	IIA T6	X
CX	II	2D	С	85°C	X

Gerätegruppe Kategorie Zündschutzart Explosionsgruppe/Temperaturklasse/ Zusatzkennzeichen max. Oberflächentemperatur

Gerätegruppe	Bedeutung
1	zugelassen für Untertage-Betrieb
II	zugelassen für alle übrigen Einsatzgebiete

Kategorie	zugelassen für Zone	Zonenbeschreibung
1G	0	Bereich, in dem explosionsfähige Atmosphäre als Gemisch aus Luft und brennbaren Gasen, Dämpfen oder Nebeln ständig, über lange Zeiträume oder häufig vorhanden ist.
2G	1	Bereich, in dem sich bei Normalbetrieb eine explosionsfähige Atmosphäre als Gemisch aus Luft und brennbaren Gasen, Dämpfen oder Nebeln bilden kann.
3G	2	Bereich, in dem bei Normalbetrieb eine explosionsfähige Atmosphäre als Gemisch aus Luft und brennbaren Gasen, Dämpfen oder Nebeln normalerweise nicht oder aber nur kurzzeitig auftritt.
1D	20	Bereich mit Bedingungen wie Zone 0, mit Luft-Staub-Atmosphäre.
2D	21	Bereich mit Bedingungen wie Zone 1, mit Luft-Staub-Atmosphäre.
3D	22	Bereich mit Bedingungen wie Zone 2, mit Luft-Staub-Atmosphäre.

Zündschutzart	Beschreibung
С	Konstruktive Sicherheit: Zündgefahr wird durch Gerätekonstruktion vermieden.

Beispielhafte Einteilung auftretender Gase, Nebel und Dämpfe nach Temperaturklasse und Explosionsgruppe

Temperaturklasse / max. Oberflächentemperatur	IIA	IIB (beinhaltet IIA)	IIC (beinhaltet IIA + IIB)
T1 / 450°C	Aceton, Ammoniak, Methan,	Stadt-(Leucht-)gas	Wasserstoff
T2 / 300°C	Ethylalkohol, n-Butan, Cyclohexan,	Ethylen, Ethylenoxid	Ethin (Acetylen)
T3 / 200°C	Benzine, Dieselkraftstoff, Heizöl,	Ethylenglykol, Schwefelwasserstoff	
T4 / 135°C	Acetaldehyd	Ethylether	
T5 / 100°C			
T6 / 85°C			Schwefelkohlenstoff

Zusatzkennzeichnung	Bedeutung
X	besondere Einsatzbedingungen (aus Beschreibung)
U	Bauteil ist eine Komponente. Die Konformität muss nach Einbau in ein Gerät erklärt werden.

ALLGEMEINE INFORMATIONEN

Der Einsatz von Geräten und Komponenten in explosionsgefährdeten Bereichen wird in den europäischen Richtlinien 94/9/EG (für Hersteller) und 1992/92/EG (für Betreiber) geregelt. Bei den vorgestellten Produkten handelt es sich um nicht-elektrische Geräte der Kategorie 2.

Gemäß Richtlinie 94/9/EG beinhaltet jede Lieferung einer ATEX Kupplung eine spezielle Einbau- und Betriebsanleitung und die vom Hersteller ausgestellte EG Konformitätserklärung. Diesen Dokumenten können alle für die Montage und den Betrieb benötigten Werte und Vorgaben entnommen werden.

Die in diesem Katalog vorgestellten Modelle BX, LP, EK und ST sind auf Anfrage in ATEX-Ausführung erhältlich. Das Modell BZ ist nicht für explosionsgefährdete Einsatzbereiche geeignet.

Alle R+W ATEX Kupplungen sind für den Einsatz in der allgemeinen Industrie geeignet (Gerätegruppe II). Ihr Betrieb ist in den explosionsgefährdeten Zonen 1 und 2 (Kategorie 2G) und 21 und 22 (Kategorie 2D) zugelassen. Für die Gerätegruppe I, sowie für die Zonen 0 und 20 besitzen diese keine Zulassung.

Weitere für den Betrieb einer ATEX Kupplung wichtige Angaben, wie die Temperaturklasse, sind auf Anfrage produktspezifisch erhältlich.

Alle zuvor zu den ATEX Produkten gemachten Aussagen beruhen auf unseren derzeitigen Erkenntnissen und Erfahrungen. Technische Änderungen sind vorbehalten.

WELTWEIT PERFEKTE VERBINDUNGEN.

QUALITÄT "MADE IN GERMANY".

AUSTRALIEN | ARGENTINIEN | BELGIEN | BOSNIEN-HERZEGOWINA | BRASILIEN | CHILE | CHINA | DÄNEMARK | ESTLAND | FINNLAND | FRANKREICH | GRIECHENLAND | GROSSBRITANNIEN | INDIEN | INDONESIEN | ISRAEL | ITALIEN | JAPAN | KANADA | KOLUMBIEN | KOREA | KROATIEN | LITAUEN | MALAYSIA | MEXICO | MAZEDONIEN | MONTENEGRO | NEUSEELAND | NIEDERLANDE | NORWEGEN | ÖSTERREICH | PERU | PHILIPPINEN | POLEN | PORTUGAL | RUMÄNIEN | RUSSLAND | SAUDI-ARABIEN | SCHWEDEN | SCHWEIZ | SERBIEN | SINGAPUR | SLOWAKEI | SLOWENIEN | SPANIEN | SÜDAFRIKA | TAIWAN | THAILAND | TSCHECHIEN | TÜRKEI | UKRAINE | UNGARN | USA | VEREINIGTE ARABISCHE EMIRATE

118 RW-KUPPLUNGEN.DE

R + W ANTRIEBSELEMENTE GMBH

Alexander-Wiegand-Strasse 8 D - 63911 Klingenberg/Germany Phone +49 9372 986 40 Fax +49 9372 986 420 info@rw-kupplungen.de www.rw-kupplungen.de

R+W AMERICA

254 Tubeway Drive
USA 60188 Carol Stream, IL
Phone +1 630 521 9911
Fax +1 630 521 0366
info@rw-america.com
www.rw-america.com

R+W MACHINERY (SHANGHAI) CO., LTD

Rm 606,999 Zhouhai Rd, Block B, Sunland International Building, Pudong Shanghai 200137 China Phone +86 21 586 829 86 Fax +86 21 586 829 95 info@rw-china.com www.rw-china.com

R+W ITALIA S.R.I.

Via De Amicis, 67 I - 20092 Cinisello Balsamo (MI) Phone +39 02 262 641 63 Fax +39 02 243 085 64 info@rw-italia.it www.rw-italia.it

R+W BÜRO SINGAPUR

55 Market Street #10-00 Singapore 048941 Phone +65 3158 4434 Fax +65 6521 3001 info@rw-singapore.com.sg www.rw-singapore.com.sg

R+W BÜRO ASIA PACIFIC

No. 34, Jalan Permas 9/2 Bandar Baru Permas Jaya Johor Bahru 81750 MALAYSIA Phone +60 177 254177 jasontai@rwcouplings.com www.rwcouplings.com

R+W BÜRO FRANCE

249 rue Irène Joliot Curie F - 60610 Lacroix Saint Ouen Phone +33 967 124232 Fax +33 344 434232 Mobil +33 612 896309 info@rw-france.fr www.rw-france.fr

QUALITÄTSMANAGEMENT

Wir sind zertifiziert

Regelmäßige freiwillige Überwachung nach ISO 9001:2008

D-ZM-16029-01-01 Registrierungs-Nr. 40503432/3

Die vorstehenden Informationen beruhen auf unseren derzeitigen Kennthissen und Erfahrungen und befreien den Verarbeiter nicht von eigenen umlassenden Prüfungen. Abbildungen können vom Original daweichen, technische Änderungen vorbehalten. Eine rechtlich verbindliche Zusicherung, auch im Hinblick auf Schutzrechte Dritter, ist damit nicht gegeben. Der Verkauf unserer Produkte unterliegt unseren Allgemeinen Verkaufs- und Lieferbedingungen.

RW-KUPPLUNGEN.DE

PHONE: +49 9372 9864-0

INFO@RW-KUPPLUNGEN.DE

+49 9372 9864-20

FAX: